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Parallel Perturbed Gauss-Newton State 
Estimator Based on Fortescue Transformation 

for Unbalanced Power Systems
Izudin Džafić, Senior Member, IEEE

Abstract——This letter extends the complex-variable perturbed 
Gauss-Newton method to estimate the state of unbalanced pow‐
er systems by exploiting the Fortescue transformation. It pro‐
poses a novel and efficient graph-based way to deal with singu‐
larities due to zero-sequence network parts bounded with delta 
transformer windings and isolated from the ground. The estima‐
tor can handle both phasor and complex power measurements. 
Compared with the standard complex-variable unbalanced state 
estimator, it achieves better numerical stability and a speed-up 
of around three times using a sequential implementation and 
five times using parallel execution.

Index Terms——Delta-winding, Fortescue transformation, itera‐
tive algorithm, least-squares approximation, parallel algorithm, 
perturbation methods, ill-conditioning, state estimation, symmet‐
rical component.

I. INTRODUCTION

THERE is an increasing interest in the fast solution of 
large-scale state estimation problems emanating from 

many sensors in broad geographical areas involved in mar‐
ket transactions. Furthermore, considering renewables that 
are primarily connected at the sub-transmission level re‐
quires the modeling of unbalanced loading in the state esti‐
mator, thus further increasing the computational burden of 
this real-time function [1]. Reference [2] proposed alleviat‐
ing the speed bottleneck through modal decoupling, and [3] 
exploited the use of compensation to account for untrans‐
posed lines and unsymmetrical construction. However, both 
[2] and [3] considered networks measured only by phasor 
measurement units (PMUs), while the sensors in existing net‐
works can be either the modern PMUs or part of the legacy 
supervisory control and data acquisition (SCADA) system. 
Reference [4] presented a practical multiphase distribution 
state estimation method that included legacy SCADA mea‐
surements and used symmetrical components. The method 

has been tested on multi-phase distribution networks with 
grounded neutral points. Using the pseudo Gauss-Newton 
framework, [5] demonstrated how SCADA measurements, in 
addition to PMUs, could be integrated into the Fortescue-
based estimator with different transformer connection types. 
It is assumed that buffering can manage the discrepancy be‐
tween SCADA and PMU refresh rates by identifying the pha‐
sor measurement values employed in the hybrid estimator so‐
lution [6]. The paper also discussed the different transformer 
connections that give rise to isolation from the ground in the 
zero-sequence model, and presented zero-sequence island de‐
tection that permits stable matrix factorization. This letter 
has two main contributions: ① a graph-based algorithm that 
fully exploits Fortescue transformation on physically sym‐
metrical three-phase networks with unbalanced loading and 
avoids matrix singularity introduced by the delta windings; 
② a parallel algorithm that utilizes the natural decomposi‐
tion of Fortescue components and results in a speed-up of 
up to five times compared with the conventional phase-coor‐
dinates method [7]. These two improvements are essential 
for the real-time tracking of the source of imbalance in trans‐
mission networks.

The algorithm proposed herein mainly targets transmission 
networks. It can be applied to large European cities where 
the distribution network is constructed by cables, giving a 
three-phase symmetrical structure [8]. The proposed algo‐
rithm based on the Fortescue transformation can be applied 
to multi-phase networks comprised of symmetrical three-
phase, two-phase, and one-phase network parts. Still, it re‐
quires the Fortescue transformation for two-phase and single-
phase branches as described in [9], [10]. However, if the 
three-phase and two-phase network components are asym‐
metric, the asymmetry must be compensated by employing 
fictitious current generators on both sides of the branch [11].

II. STATE ESTIMATOR BASED ON FORTESCUE 
TRANSFORMATION

The proposed algorithm combines the pseudo Gauss-New‐
ton state estimation (PGNSE) algorithm [5] with the Fortes‐
cue transformation to account for unbalanced loading. First, 
complex branch and injected power measurements are con‐
verted to phase branch and injected abc-phasor currents x(abc) 
using the most recent estimates of the abc-phasor voltages. 
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These currents are then converted to 012-phasor currents 
x(012) using the Fortescue analysis equations in (1) and (2). 
The PMU voltage and current measurements can be trans‐
ferred to symmetrical components without any adjustment.

x(012)=T (012)
(abc) x(abc) (1)
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After converting active and reactive power measurement 
pairs to complex voltage and current counterparts, a PGNSE 
formulation for each Fortescue component fÎ{012} is es‐
tablished:
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In a power system with nN nodes, nM real-time measure‐
ments, and nZ zero injection measurements, H is a complex 
measurement Jacobian matrix with dimension nM ´(nN); W 
is a diagonal real valued matrix of measurement weighting 
factors with dimension nM ´(nM ); ẑ is a complex vector 
with dimension nM ´ 1; E is the equality constraints matrix 
for zero-injection measurements; v is the vector of complex 
node voltages with dimension nN ´ 1; and λ is the vector of 
Lagrange multipliers with dimension nZ ´ 1. The overbar 
“-” indicates the complex conjugate and the hat “^” is for 
quantities derived from measurements.

A. Measurement Model in Fortescue Coordinates

This subsection defines entries in the complex measure‐
ment Jacobian matrix H and right hand size vector ẑ for 
each Fortescue component f. Measurements are assumed to 
be connected on node p in the case of injection measure‐
ments or on terminal p when located on a branch connecting 
nodes p and n. Measurements of power, current, and zero in‐
jection necessitate the use of the complex system admittance 
matrix Y. Power and current measurements on a branch re‐
quire π-equivalent entries denoted by y. For each Fortescue 
component f, the dimension of the matrix Y is nN ´(nN) and 
the dimension of the matrix y is 2 ´ 2. The set of nodes con‐
nected to node p is denoted by βp.
1)　Voltage PMU

The measurement number is m measured at node p. Equa‐
tion (2) converts a phase-to-ground real-time voltage mea‐
surement v̂(abc)

p  to Fortescue v̂(012)
p . Following that, the respec‐

tive entries of the vector ẑ and the matrix H are obtained:

ẑ ( f )
m = v̂( f )

p (4)

H ( f )
mp = 1 (5)

Special attention must be paid to the slack (reference) an‐
gle in order to keep the problem solvable. There are two ap‐
proaches to modeling the reference angle condition [7], [12]. 
The first approach uses a single global positioning system 
(GPS) reference for all nodal voltages, and the slack node 
voltage measurement is modeled in the same way as any oth‐

er PMU voltage measurement. The second approach em‐
ploys a bus p as the reference, with the slack angle condi‐
tion accounted for by making the angle of u(a)

p = 0°, u(b)
p =

-120°, and u(c)
p = 120°.

2)　Branch Current PMU
The measurement number is m from node p to node n. 

Equation (2) converts a phase-to-ground real-time current 
measurement î (abc)

p  to Fortescue î (012)
p . Entries of the vector ẑ 

and the matrix H are obtained as:

ẑ ( f )
m = î( f )

pn (6)
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(7)

3)　Injected Current PMU
The measurement number is m injected at node p. Similar‐

ly, by applying (2), measured phasor currents can be converted 
to the Fortescue domain. The required entries are as follows:
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(8)
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(9)

4)　Branch Complex Power
The measurement number is m from node p to node n. Us‐

ing previously calculated complex voltages at node p, phase 
complex powers are converted to Fortescue complex currents:

î (012)
pn =T (012)
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where s is the complex power. After conversion, populating 
the right hand side vector ẑ and the matrix H is identical to 
the case with injected PMU current measurement (6) and (7).
5)　Injected Complex Power

The measurement number is m injected at node p. This 
measurement type also necessitates a conversion step based 
on the previously calculated node voltages in phase coordi‐
nates, as shown in (11). The required entries are the same as 
(8) and (9).
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6)　Voltage Magnitude
The measurement number is m measured at node p. The 

right hand side for this measurement was made complex-val‐
ued by rotating a real-valued measurement by angle of the 
previously calculated voltage in Fortescue coordinates:

ẑ ( f )
m = | v̂( f )

p |Ðv( f )
p (12)

H ( f )
mp = 1 (13)

7)　Zero Injection
The measurement number is m measured at node p. The 

entries of the matrix E (equality constraints) are calculated 
using the system admittance matrix Y as follows:
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pn j = nÙ nÎ βp

0 otherwise

(14)

B. Solution Procedure

The obtained estimation subsystems for positive, negative, 
and zero sequences can be solved sequentially or in parallel 
[13] with the factorized Jacobian matrices. Figure 1 shows 
the sequential and parallel PGNSE algorithm using Fortes‐
cue transformation for state estimation of symmetrical trans‐
mission networks with unbalanced loading. In Fig. 1, the ze‐
ro- , positive- , and negative-sequence quantities are denoted 
by f = 0, 1, and 2, respectively; î(φ)

mn is the phasor current at 
node/branch m in iteration n for phase φ; î (abc)

mn  is the vector 
of abc-phasor currents at node/branch m in iteration n; î (012)

mn  
is the vector of 012-phasor currents at node/branch m in iter‐
ation n; G( f ) is the gain matrix; J ( f ) is the Jacobian matrix; 
ŝ(φ)

m  is the complex power at node/branch m for phase φ; Ssl 
is the set of slack nodes; v( f )

n  is the phasor voltage vector in 
iteration n; v(abc)

pn  is the vector of abc-phasor voltages at node 
p in iteration n; and Y ( f ) is the modified nodal admittance 
matrix. It is important to note that the weight matrix entries 
corresponding to legacy measurements must be adjusted [4], 
[14]-[16].

In PGNSE algorithm, the sequence Jacobian matrices J (k) 
are calculated and factorized only once, giving rise to effi‐
cient computation. Unlike the positive- and negative-se‐
quence networks, the zero-sequence network will contain 
one or more islands that are conductively isolated from the 
ground giving rise to a singular zero-sequence Jacobian ma‐
trix [17]. The following section discusses the transformer 
model in sequence networks as it is the reason for the exis‐
tence of zero-sequence islands and the associated singularity 
of the complete Jacobian matrix.

III. TRANSFORMER MODEL

The short-circuit and open-circuit tests are typical proce‐
dures to establish the π-equivalent circuit of a transformer. 
In case of unbalanced loading, it is necessary to adequately 
address zero-sequence modeling and the impact of the clock 
number of the transformer.

A. Positive- and Negative-sequence Transformer Circuits

Figure 2 is the general π-equivalent circuit applied to the 
positive-sequence models for all transformers. Since the 
transformer connection introduces a phase shift between pri‐
mary and secondary phase voltages, the transformer ratio is 
defined as a complex number (15), where c is the so-called 
clock number [18].

t = | t |e
jc

π
6 (15)

There are two possible clock numbers (c = 0 6) for the 
wye-wye transformer, and for the wye-delta and delta-wye 
connections, there are four possible numbers (c = 1 5 7 11). 
The clock numbers form part of the transformer designation: 
Yyc, Ydc, and Dyc. Equation (16) represents the transformer 
positive-sequence nodal equations for the π-equivalent cir‐
cuit in Fig. 2 after eliminating node x.
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Fig. 1.　Sequential and parallel PGNSE algorithm using Fortescue transfor‐
mation.
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Fig. 2.　General π-equivalent transformer model.
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have the same impedance values but different clock num‐
bers. In the case of negative sequence, the clock number is 
negative, and the corresponding negative-sequence nodal 
equations for the circuit in Fig. 2 are given by (17). The 
same positive- and negative-sequence circuits apply to the 
delta-delta connection (c = 0 2 4 6 8 10).
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B. Zero-sequence Transformer Circuit

The zero-sequence circuit of the transformer is affected by 
the winding connections and the type of grounding. For ex‐
ample, for the wye-wye connection with grounded g primary 
and secondary, i. e., Yg yg0 and Yg yg6, the circuit model in 
Fig. 2 still holds but generally has different impedance val‐
ues. The corresponding nodal equations are the same form 
as (16) but employ zero-sequence quantities. However, the 
wye-delta and delta-wye connections with a grounded wye-
winding, i.e., Ygdc and Dygc (c = 1 5 7 11), behave as a ze‐
ro-sequence filter. As shown in Fig. 3, the clock number 
does not play a role in the corresponding zero-sequence cir‐
cuits. Other transformer configurations (those involving a 
wye-connected winding without grounding and the delta-del‐
ta connection) introduce an open circuit for zero-sequence 
currents on both terminals.

IV. ZERO-SEQUENCE ISLANDS

The zero-sequence transmission network could cause ill-
conditioning of the whole calculation process in both Fortes‐
cue and phase-coordinates calculations. In the phase-coordi‐
nate approach [7], the ill-conditioning problem is typically 
solved by adding shunt elements at delta windings which are 
then compensated by fictitious current generators [19]. An‐
other method for treating ill-conditioning is shown in [17], 
[19] by embedding a methodology for changing critical piv‐
ot values during the factorization phase. The obtained matrix 
is indefinity for equality-constrained state estimation, necessi‐
tating a special pivoting strategy involving 1 ´ 1 and 2 ´ 2 
pivots. This procedure is extremely difficult because it re‐
quires the use of a non-standard sparse matrix solver. It may 
also affect the results in cases where the system is on the 
verge of black-out. This letter proposes a graph-based algo‐
rithm for removing the source of ill-conditioning while 
speeding up the solution process. Consider the illustrative ex‐
ample in Fig. 4. Figure 5 is obtained after applying the zero-
sequence line and transformer models, where it is visible 
that areas I and IV can easily pass the zero-sequence cur‐
rent. Area II can conduct only the minimal capacitive zero-
sequence currents. However, since the system admittance ma‐
trix of area III is singular, it would cause the whole system 
admittance matrix to become singular. Therefore, instead of 

calculating a single zero-sequence admittance matrix, a sepa‐
rate zero-sequence admittance matrix is defined for every ze‐
ro-sequence connected island. For those islands where the ze‐
ro-sequence admittance matrix cannot be inverted, the zero-
sequence currents are equal to null. Thus, there is no need to 
estimate the zero-sequence values in such areas. The singu‐
larity is wholly removed without introducing any ill-condi‐
tioning to the rest of the system. The analysis requires the 
creation of one system admittance matrix for positive-se‐
quence (k = 1), one system admittance matrix for negative-se‐
quence (k = 2), and a set of system admittance matrices after 
a topological trace of the equivalent zero-sequence network 
[20]. Algorithm 1 summarizes the graph-based procedure for 
the detection of zero-sequence islands. The algorithm em‐
ploys the non-recursive breadth-first search method, as de‐
fined in [20], [21]. Each zero-sequence island will be as‐
signed a unique identifier (color), which will be used to com‐
pute the corresponding matrices. The corresponding Jacobian 
and zero-sequence gain matrices for the areas that require es‐
timation are marked with an asterisk sign “*” in the numeri‐
cal algorithm of Fig. 1. Xfmr stands for transformer.
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Fig. 3.　Wye grounded-delta transformer connection.
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Fig. 4.　Symmetrical transmission system with different three-phase trans‐
former connections.
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Fig. 5.　Equivalent zero-sequence network.

Algorithm 1: graph-based procedure for detection of zero-sequence island
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Create graph G = graph(ij);

C ={slackNode}, color(k)¬0, k = 12nN;

islandNo¬ 0 i¬ slackNode;

do

 i¬ dequeue(C), islandNo¬ islandNo + 1;

 color(i)¬ islandNo A¬ adjacentNodes(G(i));

 while A is not empty

  j¬ dequeue(A) //A =A -{ j}

  if color( j)<> 0 continue;

  if conn(
-
ij)=Xfmr and connType <> Yg yg

   C¬C +{ j}, continue;

  A¬A + adjacentNodes(G( j)), color( j)¬ islandNo;

 end while

 C¬{C:color(C(k))= 0k = 12dim(C)};

while C is not empty
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V. NUMERICAL RESULTS

Tests were carried out using transmission networks (118, 
1888, and 9241 three-phase nodes) and European distribu‐
tion networks (1500 and 3000 three-phase nodes). The IEEE 
118- , 1888- , and 9241-bus test systems are available with 
the MATPOWER distribution files from [22]. The 1k5 and 
3k distribution network instances are described in [23] and 
their data are available from [24]. The number of measure‐
ments is expressed via three-phase measurement points. Ta‐
ble I shows the three single-phase measurements for com‐
plex power (S), phasor measurement unit currents (PMUI), 
and voltages (PMUV). The calculation time is averaged over 
ten solutions of the PGNSE algorithm in Fig. 1 in both the 
sequential (Seq.) and parallel (Par.) implementations and 
compared with the vectorized-code implementation of the 
phase-coordinates approach (MPh.) [7]. The computations 
are done from a flat start (factorization+backward/forward it‐
erations) on a MacBook with a 4-core Intel Processor 1.8 
GHz and 8 GB RAM. The proposed PGNSE algorithm 
based on Fortescue transformation gives a speed-up factor 
(SUF) relative to [7] (SUF is the ratio of the time of MPh. 
to the time of PGNSE), which is about three for the sequen‐
tial implementation and five for the parallel one as shown in 
Table I. The maximum percentage of voltage deviation is al‐
so shown in Table I: DV =max{100 ´ |(vi - vri )/vri|}, where vri 
and vi are the complex voltages at node i calculated by [7] 
and the method described in this letter, respectively. Since 
the maximum deviation is less than 0.1%, both the proposed 
PGNSE algorithm and the compensation-based phase-coordi‐
nates approach provide solutions with the same accuracy.

TABLE I
NUMERICAL RESULTS

Net‐
work

118A

118B

1k5A

1k5B

1888A

1888B

3kA

3kB

9241A

9241B

Number of 
three-phase 

measurements

S

186

0

1286

0

2531

0

2228

0

16049

0

PMUI

186

186

648

1948

1261

2531

1898

3386

8025

16049

PMUV

3

118

735

1426

87

1888

2534

2986

66

9241

Calculation time (ms)

MPh. [7]

41.6

12.8

415.7

119.7

637.0

148.9

1304.2

358.1

3305.6

529.5

Seq.

13.7

4.5

134.8

39.7

208.9

50.3

458.7

122.1

1097.2

171.7

Par.

8.6

2.9

83.9

24.8

124.9

30.6

263.3

72.6

635.3

102.1

DV 
(%)

0.02

0

0.03

0

0.05

0

0.05

0.00

0.07

0.01

SUF

Seq.

3.0

2.8

3.1

3.0

3.0

3.0

2.8

2.9

3.0

3.1

Par.

4.9

4.4

5.0

4.8

5.1

4.9

5.0

4.9

5.2

5.2

Test results are obtained on an 1888A network instance 
with isolated areas under increased loading, and the conver‐
gence pattern of phase-coordinates and estimators based on 
Fortescue transformation are summarized in Table II. Mea‐
surements were generated by multiplying each load by the 
load multiplier coefficient. Because of the singularity isola‐
tion feature, the proposed algorithm can be used to solve the 
system under higher loading conditions.

VI. CONCLUSION

Recent research has shown the advantage of estimation 
based on Fortescue transformation, but presented findings 
limited to the measurements from PMUs. This letter demon‐
strated that better numerical conditions and a significant 
speed-up could be obtained from the estimator based on For‐
tescue transformation compared with the standard phase-co‐
ordinates implementation even with classical SCADA mea‐
surements when the computation exploits the recent PGNE 
framework.
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