
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

Data-driven Approach for State Prediction and 
Detection of False Data Injection Attacks in 

Smart Grid
Haftu Tasew Reda, Adnan Anwar, Abdun Mahmood, and Naveen Chilamkurti

Abstract——In a smart grid, state estimation (SE) is a very im‐
portant component of energy management system. Its main 
functions include system SE and detection of cyber anomalies. 
Recently, it has been shown that conventional SE techniques 
are vulnerable to false data injection (FDI) attack, which is a 
sophisticated new class of attacks on data integrity in smart 
grid. The main contribution of this paper is to propose a new 
FDI attack detection technique using a new data-driven SE 
model, which is different from the traditional weighted least 
square based SE model. This SE model has a number of unique 
advantages compared with traditional SE models. First, the pre‐
diction technique can better maintain the inherent temporal cor‐
relations among consecutive measurement vectors. Second, the 
proposed SE model can learn the actual power system states. Fi‐
nally, this paper shows that this SE model can be effectively 
used to detect FDI attacks that otherwise remain stealthy to tra‐
ditional SE-based bad data detectors. The proposed FDI attack 
detection technique is evaluated on a number of standard bus 
systems. The performance of state prediction and the accuracy 
of FDI attack detection are benchmarked against the state-of-
the-art techniques. Experimental results show that the proposed 
FDI attack detection technique has a higher detection rate com‐
pared with the existing techniques while reducing the false 
alarms significantly.

Index Terms——Data-driven, false data injection, machine 
learning, power system security, state estimation, smart grid.

I. INTRODUCTION

THE emergence of cutting-edge information and commu‐
nication technology with the power grid has trans‐

formed the energy ecosystem into the current arena of cyber-
physical system known as the smart grid. However, their in‐
tegration into the power grid has also brought a great num‐
ber of vulnerabilities that pose breaches of data integrity, 
confidentiality, availability, and so forth. Threats to the smart 
grid can take many forms, from compromising meter read‐

ing, carrying out remote attacks against communication pro‐
tocols, to compromising power system state estimation (SE) 
results.

Weighted least squares (WLS) [1] is the most commonly 
used SE technique in the industry. As an alternative to WLS, 
the least absolute value (LAV) [2] is considered better for its 
robustness. Yet, LAV estimators are typically slow and thus 
insufficient for real-time system monitoring due to the non-
convexity and non-smoothness [3]. Further, the conventional 
SE methods are facing a growing threat from an emerging 
data integrity cyber-attack known as false data injection 
(FDI) [4], [5]. Cyber criminals can launch FDI attacks by in‐
jecting malicious data over the measurement reading of intel‐
ligent electronic devices (IEDs) [1] and these attacks can be 
crafted in a way to bypass the bad data detection (BDD) pro‐
cess of the SE. In consequence, the FDI attack can mislead 
the outcome of the SE and lead to a myriad of security 
risks, including failure of power system operation. More‐
over, the conventional SE methods are inadequate to fully 
track power system variables and customer load profiles that 
are changing dynamically.

The main motivation of this paper is the challenge of ex‐
isting SEs against the incumbent FDI attack. Besides, be‐
cause of the inherent complexity of power systems, the sheer 
volume of data and the fact that high-performance comput‐
ing devices are becoming available, data-driven techniques 
are increasingly powering various applications of the smart 
grid. For example, [6] has proposed a data-driven FDI attack 
design where subspace identification technique is employed 
for the attack construction, and the authors have investigated 
the attack detection scheme using coding theory in the cyber-
physical system environment. Moreover, in [7], a data-driven 
method based on partial observable Markov decision process 
for an FDI attack against automatic voltage controls is evalu‐
ated using Q-learning algorithm, where a data-driven FDI at‐
tack construction and a data-driven defense strategy are sug‐
gested. To address the security issues of the existing SEs, 
this paper proposes a two-stage power state prediction and 
attack detection (SPAD) framework for power system securi‐
ty. The first stage aims to predict the power system states, 
and the second stage is used to detect the FDI attacks. Bina‐
ry classification based on Kullback-Leibler (KL) distance is 
used for the detection of FDI attacks. Overall, the proposed 
SPAD framework aims to improve the detection of incum‐
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bent cyber-attack. Deep neural networks (DNNs) are used 
for the implementation of the proposed framework.

The main contributions of this paper are summarized as 
follows. ① A model is developed for the state prediction 
and a KL distance is derived as an attack detection metric. 
② Experiments have been conducted considering attack-free 
scenario and a wide range of false data attack scenarios. In 
the proposed model, a false data attack alert is generated 
when the computed KL value of the predicted states is great‐
er than a decision threshold. One of the main reasons why 
existing BDD techniques fail to detect FDI attack is that the 
dissimilarity measure (i. e., residual vectors of the SE) after 
the attack drops below the threshold of BDD. However, our 
proposed FDI attack detection technique is capable of adjust‐
ing the detection threshold adaptive using the probability dis‐
tributions between estimated states and previously known at‐
tack-free states. ③ In addition, the experiments incorporate 
medium- to large-scale power system transmission networks 
(namely 39- , 118- , 300- , and 500-bus systems) to evaluate 
the scalability of the proposed state prediction model. Be‐
sides, the proposed model has been evaluated towards net‐
work topology changes and compared with the WLS-based 
SE models. ④ Moreover, the numerical results show that the 
proposed model can perform estimations very similar to the 
results of the WLS estimator. The estimation error in terms 
of mean square error (MSE) of the predictive SE and the 
WLS is in the order of 10-3, which is acceptable [1] for the  
purpose of power system SE. ⑤ Finally, the proposed detec‐
tion technique for FDI attack detects false data attacks with 
an accuracy of over 98% compared with the existing false 
data attack detection with an accuracy of below 85%.

The remainder of this paper is organized as follows. First, 
the background on measurement models and security of the 
power system SE is briefly presented. Next, Section II re‐
views the existing literature where related works of existing 
SE techniques and FDI attack detection techniques are dis‐
cussed in Sections II-A and II-B, respectively. Section III dis‐
cusses the architecture and methodology of the proposed 
SPAD framework and covers comprehensively each method 
of state prediction and SPAD. Section IV illustrates the ex‐
perimental setup and performance evaluation of the proposed 
state prediction. Moreover, the adversary models used within 
the proposed SPAD framework are examined in Section V. 
Further, Section VI presents the numerical results and discus‐
sion of the proposed SPAD framework. Finally, this paper is 
concluded in Section VII.

In a control center, an SE aims to obtain optimum system 
states based on the received measurements. The m-dimen‐
sional measurement vector y can be formulated through a 
non-linear AC model or a linearised DC model [1], repre‐
sented by y = h(x)+w and y =Hx +w, respectively, where 
x ∈Rn × 1 is the n-dimensional state vector; h(×) or H ∈Rm ´ n is 
a function relating measurements and state vectors (also 
known as the Jacobian matrix); and wÎRm ´ 1 is a noise at‐
tributed to the measurement errors. Considering a Gaussian 
noise distribution approximated by N (0 σ 2

i ), the WLS esti‐
mator uses minimization of weighted sum of the residual 
squares [1]. After estimation is performed, the SE conducts 

detection of malicious data, usually through BDDs [1], [8], 
e.g., chi-squared distribution (χ2) and the largest normalized 
residue (LNR) tests. The BDDs compute the residual vectors 
in terms of ℓ2-norm (where ℓ2-norm of r is defined as ||r||2

2 =∑r2) between the original measurements y and the estimat‐

ed measurements ŷ =Hx̂, given by ||r||2
2 = ||y -Hx̂||2

2. Howev‐
er, [4] and [5] have indicated that if ||r||2

2 < τ, it also holds 
true that ||r false||

2
2 < τ for detection threshold τ. This implies 

that the FDI attack vector (which can be represented by a =
Hb =[a1a2...am ]T, where b =[b1b2...bn ]T is the error vec‐
tor injected by the adversary) can successfully bypass exist‐
ing BDD techniques that further calls for the development of 
new SE and/or new detection schemes.

II. RELATED WORK 

A. Review on SE Methods

Various SE methods have been reported in the literature. 
Reference [9] has summarised that the SE problem formula‐
tion can follow optimization-only [1] - [3], hybrid machine 
learning (ML) optimization [9], [10], or just data-driven 
methods through ML algorithms [11], [12]. Various existing 
researches on power system SE deal with optimization 
schemes including WLS and LAV using convex or non-con‐
vex iterative solvers. However, the traditional SE models 
have a number of limitations. First, they are vulnerable to 
bad data injection including the FDI attack which has been 
demonstrated in a number of literatures including [4], [5]. 
Second, the SE algorithms incur high computational com‐
plexity as the estimation process mainly depends on initial‐
izations [13]. Third, the estimation procedures take longer 
time [13] that may leave operators to wait between succes‐
sive measurement instants. Furthermore, the SEs are chal‐
lenged by the ever-increasing scale and dynamics of the 
power system [9], [10]. In contrast, data-driven methods can 
use states from both current and previous timeslots, and can 
achieve better performance in accuracy, efficiency, and stabil‐
ity. The application of artificial neural network (ANN) in 
power system SE is one of the contemporary data-driven re‐
searches [11], [12]. Autoencoder-based ANN for power sys‐
tem SE using measurement data has been proposed in [12]. 
Recent research in [10] has shown that DNN-based SE meth‐
ods outperform the previously mentioned neural network 
(NN) techniques. In this paper, we propose a predictive pow‐
er SE based on deep recurrent NN (DRNN) that utilizes the 
physical network of the power system.

B. Review on FDI Attack Detection Techniques

1)　Detection Categories
χ2 and LNR are two mostly used attack detectors in the 

SE. However, it has been shown earlier that they are vulnera‐
ble to FDI attack. A considerable amount of research has 
been done in the mitigation strategy against FDI attack and 
can be broadly classified into three main categories: protec‐
tion, detection based on SE, and detection based on ML [8]. 
The first type, which accounts for the majority of the mitiga‐
tion strategies against the FDI attack, aims to combat the at‐
tack by protecting a set of measurement devices [8], [14] (e.g., 
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graph-theoretic, game-theoretic, and topology perturbation). 
These strategies, however, have a few drawbacks. First, they 
could only reach on some minimum number of measure‐
ments required to ensure the system observability. In addi‐
tion, the solutions provided could increase burdens to the op‐
erator (for example, the perturbation method). Second, their 
implementation is not economically feasible while adding 
the protections over a large number of IEDs or other con‐
sumer-side devices. Finally, the protection depends on exter‐
nal elements such as a secure IED; however, if the IED it‐
self is compromised, it will affect the method. Detection 
methods on the basis of SE include forecasting [8], signal 
processing [15], and statistical modeling [16].
2)　Detection Based on Statistical Distance

Statistical-based detection schemes [8], [14] are further di‐
vided into cumulative sum test, quickest change detection, 
and detection based on statistical distance. A statistical dis‐
tance quantifies the consistency of two probability distribu‐

tions. Compared with the other categories, the distance-
based detection methods achieve significant performance 
against the incumbent cyber-attacks. KL and Jensen-Shannon 
(JS) distance are two main statistical distance-based methods 
which have recently been used for detecting malicious mea‐
surements. Reference [16] proposes FDI attack detection for 
power system measurements using KL distance metric. Simi‐
larly, [17] suggests FDI attack detection leveraging KL dis‐
tance metric and joint power and log transformation, where 
the latter is used to transform measurement variations to im‐
prove detection probability. The JS distance metric has been 
used for attack detection [18] and electricity theft detection 
of advanced metering infrastructure networks [19].

Table I summarises a comparison of the proposed SPAD 
framework in this paper with existing works, where PD is 
the detection probability; FPR represents false positive rate; 
TPR represents the true positive rate, and AUC is the area 
under the ROC curve.

TABLE I
COMPARISON OF PROPOSED SPAD FRAMEWORK WITH EXISTING WORKS

Type

SE

Detection

Detection 
performance

Comparison attributes

Approach

Power flow model

Estimation performance

Computational efficiency

Proposed detection 
approach

Probability distribution 
based on

Adaptive threshold

Detection parameter

Detection accuracy

AUC

Recall

Precision

[16]

WLS

AC

Not considered

Low

Detection of FDI 
using KL distance

Estimated 
measurements

Not considered

PD

High

Not considered

Not considered

Not considered

[17]

WLS

AC

Not considered

Low

Detection of FDI using 
KL distance and joint 

image processing

Estimated 
measurements

Not considered

PD, FPR

High

Not considered

Not considered

Not considered

[18]

WLS

AC

Not considered

Low

Detection of FDI 
using JS distance

Estimated 
measurements

Not considered

PD

Unknown

Not considered

Not considered

Not considered

[19]

WLS

AC

Not considered

Low

Detection of energy 
theft using JS 

distance

Estimated 
measurements

Not considered

FPR v.s. TPR

Unknown

Not considered

Not considered

Not considered

Proposed

Data-driven

DC and AC

Considered

Low

Detection of FDI 
using predictive SE 

and KL distance

Predicted states

Considered

FPR v.s. TPR

Very high

Considered

Considered

Considered

In summary, this paper is unique in the following aspects. 
One of the key differences lies on the SE method. We have 
taken the unique FDI attack detection technique using predic‐
tive SE, which is different from the existing WLS-based FDI 
attack detection techniques. The main idea is to avoid WLS-
based SE, which is vulnerable to the majority of stealthy 
FDI attacks. The other feature of this paper is based on the 
detection threshold. If the detection threshold is relatively 
high, existing detectors will incorrectly report a false nega‐
tive, and existing detectors report a false positive when the 
threshold is very small. This can be challenging especially 
when the malicious user can inject sparse attack vectors into 
the measurements. The proposed binary classification algo‐
rithm uses adaptive detection threshold using probability dis‐
tributions of the normal and attack data. Instead of using a 
default threshold obtained from the KL distance metric, the 
detector is evaluated using a number of thresholds, where 
one that results in the optimal detection performance is se‐
lected as the optimal decision threshold. Furthermore, unlike 

existing works on the KL-based detectors, this paper has 
evaluated a number of detection performance metrics includ‐
ing receiver operating characteristic (ROC) curve, AUC, re‐
call, and precision.

III. ARCHITECTURE AND METHODOLOGY

A. Proposed SPAD Framework

Figure 1 shows a block diagram of power system SE and 
attack detection. Figure 1(a) shows the procedures of SE and 
attack detection adopted in the conventional energy control 
center, where SCADA stands for the supervisory control and 
data acquisition system; and EMS stands for the energy man‐
agement system. Figure 1(b) is the proposed architecture of 
the SPAD framework, which augments the SE procedures 
and cyber-attack detection. 

Conventional SE requires network topology processing [1] 
to be performed prior to the SE procedure. This is specifical‐
ly indicated by the “network topology processor” in Fig. 
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1(a), which collects data about circuit breakers and config‐
ures real-time system parameters. That is to say, once the 
network topology is known, the SE assumes that the topolo‐
gy is correct and continues with the estimation and BDD 

procedures. In our proposed SPAD framework, there is a 
module called “topology parameter settings” to account for 
the changes in topology. The following assumption is intro‐
duced.

Assumption 1 (topology parameter settings) In one train‐
ing instance, it is assumed that the topology parameter does 
not change.

Assumption 1 implies that only one topology parameter is 
active at any point of time instead of combining the differ‐
ent network topology configurations. In other words, the to‐
pology parameter does not change for a configuration consid‐
ered, and each training procedure is associated with each set‐
up of system configuration. Hence, the datasets are created 
following the network topology configurations identified by 
the network topology processor, and are stored in the data‐
base of the control center.

For the implementation of the proposed SPAD framework, 
two DNN concepts namely DRNN and deep feed forward 
NN (DFFNN) are used. The proposed framework includes 
three modular elements, namely data acquisition and pre-pro‐
cessing module, predictive SE module (i. e., Stage 1), and 
the FDI detection attack module (i. e., Stage 2). These are 
discussed in the following subsections.

B. Data Acquisition and Data Pre-processing

In real-world scenarios, field devices installed over trans‐
mission networks measure electrical quantities, and relay 
their readings to the control centre through IEDs (e.g., Fig. 
1(a)). In a typical modern EMS, system operators store plen‐
ty of historical measurement data in database systems for a 
variety of applications such as monitoring and security tools 
[1]. In this regard, the ML model can be trained using the 
historical data. In this paper, the proposed data-driven state 
prediction technique is assessed using data from IEEE stan‐
dard benchmark systems. The dataset includes measurement 
sets y as an input and x as an output. Nodal voltage angles/
magnitudes, and sensor measurements constituting real pow‐
er injections at the buses and real/reactive power flows 
across the branches are generated (as to be demonstrated in 
Section IV-A).

Further, real-time power load data are used which are ob‐
tained from Global Energy Forecasting Competition 2012 
[20], hereafter referred to as the GEFCom. The real-time 
power load data range from the fiscal year 2004 to 2008, al‐
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Fig. 1.　Block diagram of power system SE and attack detection. (a) Considering conventional framework. (b) Considering proposed SPAD framework.
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together 56 months over 20 power utility regions of the 
USA. More details can be found in Section IV. In DL mod‐
els, data preprocessing is a critical approach for achieving 
improved learning efficiency and accuracy. In this step, we 
deal with inconsistent data, dataset normalization, scaling, 
and reshaping. In addition, the output variables are scaled to 
reduce the size of the stochastic gradient descent (SGD), 
which is used to update weights, resulting in a more stable 
training model.

C. Proposed Power System State Prediction

The objective of the proposed state prediction model is to 
infer x based on y. The model is trained using a training da‐
ta sequence given by St ={(y1tx1t ) (y2tx2t )... (ymtxnt )}. As 
mentioned previously, real-time power load data are used 
that span a range of time intervals. Hence, the matrix notations 
Y and X are used for the training and testing, respectively, 

where Y =

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úy11 y12  y1t

y21 y22  y2t

  
ym1 ym2  ymt

, and X =

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú
x11 x12  x1t

x21 x22  x2t

  
xn1 xn2  xnt

. 

Algorithm 1 summarises the step-by-step implementation 
of the power system state prediction. Following Assumption 
1 on the topology parameter settings, the following assump‐
tion is also considered.

Algorithm 1: power system state prediction

1:  procedure ESTIMATE(Y)
2:    function loadData(×)
     Read network topology configuration
      for ν = 1 to K do
       if ψ =Ψν then
         load Dataset{(Y, X)} corresponding to ψ
       end if
      end for
      end function
      Initialize weights, epoch, batchSize, learningRate
3:    trainingSet¬80%(Dataset)
4:    testSet¬20%(Dataset)
5:    Configure model hyperparameters
6:    Compute non-linear activation functions
7:    Compute loss function over forward loop
8:    repeat
9:    Using ADAM optimiser and learningRate
10:   Backprop errors, Update weights
11:   function TRAINMOD(trainingSet)
12:    for each feature of training set do
13:      PSEMod¬PSEMod.fit(trainingSetepochbatchSize)
14:      return PSEMod
15:    end for
16:   end function
17:   function TESTMOD(testSet)
18:    for each feature of test set do
19:      PSEVal¬TRAINMOD.evaluate(testSet)
20:      return PSEVal
21:    end for
22:   end function
23:   end repeat until model improved
24:   function PREDMOD(y)
25:    for m = 1 to M do
26:     Obtain ym, x̂¬ TESTMOD.predict(y)
27:     return x̂
28:    end for
29:   end function
30: end procedure

Assumption 2 (network topology configurations) The 
power grid considered has a finite number of network topolo‐
gy configurations denoted by KÍN. Suppose ν is the index 
of the configurations with ν ={12...K}.

The ESTIMATE(Y) procedure in Algorithm 1 is used to 
predict the system states based on the provided input Y. The 
procedure checks which topology configuration is active at 
any time point and starts loading the dataset, which is given 
by Dataset{(Y X)}, using the loadData(·) function. The corre‐
sponding topology configuration is obtained from the topolo‐
gy parameter settings of Fig. 1 which is linked to the net‐
work topology processor. Suppose that the set of all finite 
network configurations is given by Ψ ={Ψ1Ψ2...Ψν}|"ν. 
And suppose that the instantaneous network configuration is 
given by ψ. The procedure is thus expected to load the datas‐
ets corresponding to ψ.

Before training the model using the TRAINMOD(·) func‐
tion, hyperparameters such as optimizer, batch size (repre‐
sented as batchSize), and learning rate (represented as learn‐
ingRate), etc. are configured in each layer and weights are 
initialized using the Xavier normal distribution [21]. A train‐
ing model PSEMod is built after fitting the model on the 
training set trainingSet and the hyperparameters. The func‐
tion used to train the model is the TRAINMOD(·). Then, the 
trained model is evaluated on the testing set testSet. Here, 
the evaluated model is represented by PSEVal where the 
function is represented by TESTMOD(·). Finally, for each 
measurement reading m = 1 to M, the state vector correpond‐
ing to y is predicted using the improved model. This part is 
performed by the PREDMOD(·) function. Although there are 
plenty of SGD optimisers including Adagrad, Adadelta, etc. 
that are suitable for different NN models, ADAM [22] opti‐
mizer has been used during the training of the DRNN and 
DFFNN models. To reduce overfitting, regularization method 
based on dropout [22] has been used while training the 
DRNN/DFNN models. Further, Huber loss function is de‐
fined while training the DNN models. First, an attack-free 
dataset is used to train the model, then evaluated with and 
without the FDI attacks.
1)　Motivation for Selection of DNN

RNNs are a class of NNs specialised for predicting a se‐
quence of data involving time. In contrast to FFNNs, RNNs 
allow cyclical connections that can map to each output from 
previous inputs. Theoretical and experimental evidences [23] 
show that DRNNs benefit from the depth of hidden layers 
and outperform the conventional and shallow RNNs. The 
depth of RNN is introduced in many ways [23]: input-to-hid‐
den, hidden-to-output, and hidden-to-hidden. Further, for esti‐
mating states of correlated power system measurement data, 
DRNNs outperform the DFFNNs [23]. In this paper, DRNNs 
are chosen as they are much more robust for prediction and 
classification tasks than other NNs. Their prediction perfor‐
mance is also compared with the DFFNNs.
2)　Model Configuration

For a given observation time t and number of features d, 
the training sequence for the network model is denoted as 
stÎRd. The construction of the model is defined through 
functions between the input, hidden, and output layers. The 
neuron at the l th hidden layer (represented by ht

lÎRd ´ nh, 
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where nh is the number of the hidden neurons) receives the 
input vector of y and hidden neurons of the previous state. 
This is represented by (1).
ht

l =ψ l (ytht - 1
l )=ψ l (ωlψ l - 1 (ωl - 1ψ l - 2(ω1ht - 1 + b1 yt ))) (1)

where ψ l is the non-linear activation function of the lth hid‐
den layer; and ωl and b l are the weight vector and bias vec‐
tor, respectively.

D. Proposed FDI Attack Detection

The KL distance is applied in numerous cases [16] - [19], 
[24] such as information theory, anomaly detection, data min‐
ing, and ML algorithms, and recently, in cyber-attack detec‐
tion of power system. In this paper, the cyber-attack detec‐
tion is formulated as a binary classification problem using 
the KL distance metric. By computing the KL value of the 
probability distributions between consecutive time steps (i.e., 
states at the previous time and states at the current time), the 
detector can effectively monitor the dynamics of the power 
system states. In the following, we first define the state vari‐
ations and the corresponding probability distributions, which 
are important for the detection algorithm.

Definition 1 (state variation) The state variation Dxi 
("xiÎ x) is the difference between two consecutive states 
given by Dxi = xi (t)- xi (t - 1) where t and t - 1 denote the 
current and previous time instants, respectively. Let lDxi

 and 

mDx̂i
 be the probability distribution of the previous Dx and 

the predicted current Dx̂i, respectively.
Remark 1 After computation of lDx and mDx in Defini‐

tion 1, the KL distance Λ from lDx to mDx̂ can be expressed 
mathematically as:

Λ(mDx̂||lDx )=∑mDx̂ log2( mDx̂

lDx ) (2)

Definition 2 (KL distance) Λ(×) is a non-negative num‐
ber, and can be defined as:

Λ(×)= {R+   mDx ¹ lDx

0      mDx = lDx"xÎ x
(3)

Remark 2 Λ(×) of Definition 2 is asymmetrical, meaning 
that:

ì
í
î

Λ(mDx||lDx )=Λ(lDx||mDx )    lDx =mDx"xÎ x

Λ(mDx||lDx )¹Λ(lDx||mDx )    "xÎ x
(4)

Definition 3 (attack detection) The FDI anomaly detec‐
tion is formulated as a binary classification problem (defined 
by (5)) as our aim is to classify measurement samples into 
normal and FDI attack classes.

δ(x̂)=
ì
í
î

1    Λ(x̂)³ τ
0    Λ(x̂)< τ

(5)

where τ is obtained from a statistical estimation based on the 
confidence interval.

The confidence interval is given by:

c(ρ)= Λ̄ ± z ( σs

sqrt(S) ) (6)

where Λ̄ is the mean of the set of KL values; z is a value ob‐
tained corresponding to each detection confidence level ρ as 
given in Table I; and σs is the standard deviation of Λ sam‐

ples with a sample size of S.

The attack detection algorithm is trained through predicted 
states of the normal traffic, and evaluated using both normal 
and bad data injected traffics. Algorithm 2 explains the of‐
fline and online FDI attack detection system. DETECT(·) is 
the attack detection procedure. In the offline mode (repre‐
sented by the OFFLDETECTION(·) function), the training 
model uses adaptive threshold based on the confidence inter‐
val of the attack-free traffic. Then, the KL of any incoming 
traffic is compared against the threshold. Tables II and III il‐
lustrate the threshold values obtained for the 1-year and 5-
year data corresponding to the z value in Table I, respective‐
ly. The two cases are based on the results of the proposed 
state prediction model. As it can be observed from the two 
tables, the Λ(×) value of those without attack is quite smaller 
than those of FDI-manipulated data, where the adversary 
model I is used (threat model is explained in Section IV-C). 
The performance of the proposed detection system is also 
compared with the WLS-based KL detection systems in Sec‐
tion V. For a given topological configuration, the detector is 
trained using the normal traffic to obtain adaptive thresholds 
for the considered detection confidence level. In addition, 
the online FDI attack detection is performed for each incom‐
ing measurement data and this is illustrated by the 
ONLDETECTION(·) function of Algorithm 2.

IV. EXPERIMENTAL SETUP AND PERFORMANCE EVALUATION 
OF PROPOSED STATE PREDICTION 

In this section, justifications through numerical simula‐
tions of the proposed state prediction are presented.

A. Test System Scenario

The data from four power grid standard test systems, i.e., 
IEEE 39-bus, 118-bus, 300-bus, and ACTIVSg 500-bus sys‐
tems, are used to assess the performance of the proposed 
state prediction. The IEEE 118-bus system has 118 buses, 
186 branches, with a total of 304 sensor measurements con‐
sidering the DC power flow. The IEEE 39-bus system has 
39 buses, 46 branches, and a total of 85 nodal injections and 
branch power flows given the DC power flow. For the AC 
power flow, while the system states include voltage magni‐
tude and phase angle, the measurement data include real and 
reactive power injections, and real and reactive power flows. 
Similarly, the IEEE 300-bus and ACTIVSg 500-bus systems 
have a total of 711 and 1097 measurement data, respectively, 
considering DC power flow.

TABLE I
Z VALUES BASED ON NORMAL DISTRIBUTION

ρ (%)

90.0

95.0

98.0

99.0

99.5

99.9

z value

1.645

1.960

2.330

2.576

2.807

3.291
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The experimental dataset is prepared using GEFCom 
based on an hourly interval. Real-time power load profile of 
five power zones of two categories are used. The first is for 
2004 (a total of 43920 dataset used) and the other is for 
2004 to 2008 (a total of 90320 dataset used). The hourly re‐
al-time power load data have been sampled to a 5-min inter‐
val. This system-level load distribution has further been nor‐
malized, distributed to the bus-level load rating of the simu‐
lated system. The procedures of dataset preparation of the 
two test systems and the actual load power data using MAT‐
LAB R2019B and MATPOWER [25] are defined as follows. 
First, the sampled GEFCom power load values are normal‐
ized. After setting up the original load case data of the test 

systems, for each number of samples over the target utility 
regions, the power loads (including real and reactive) are 
multiplied by each of the normalized load values. Next, for 
each of the test systems, the DC and AC optimal power 
flows are generated. Given the new power load and genera‐
tion conditions, the system state vectors are then generated. 
Furthermore, the measurement matrices Y are generated for 
the AC and DC power flows of the test systems. To be more 
realistic (i.e., to account for the inherent communication nois‐
es against the measurement data), a normally distributed 
Gaussian noise with mean μ and standard deviation σ is add‐
ed to the generated measurement. After obtaining the measure‐
ment data and system states, the FDI attack is generated using 
adversarial models I and II shown in Section V. Note that the 
dataset of the DC and AC power flows are performed indepen‐
dently.

B. Prediction Performance

The proposed state prediction is analysed using the DC 
and AC power flow models. Implementation results of the 
DC model for the IEEE 39-bus and 118-bus systems are 
based on three densely-connected hidden layers. Likewise, 
the AC model for the IEEE 39-bus and 118-bus systems and 
the DC model for the IEEE 300-bus and ACTIVSg 500-bus 
systems are based on six densely-connected hidden layers. 
Table V is the configuration of the state prediction models 
with respect to the four test systems for a given observation 
time. As depicted in Table V and used throughout our numer‐
ical simulation, the NN model input refers to the measure‐
ment data (e.g., 85 for the IEEE 39-bus system and 304 for 
the IEEE 118-bus system given the DC power flow), and the 
NN model output refers to the estimated system states (e.g., 
77 for the IEEE 39-bus system and 236 for the IEEE 118-
bus system considering the AC power flow) for a given time 
interval. Similarly, the number of neurons for each densely-
connected layer is also described. The following parameters 
are used while training the NN models for both DC and AC 
power flows: learning rate is 0.01, epochs are 100, and batch 
size of training algorithm is 64.

TABLE V
CONFIGURATION OF STATE PREDICTION MODELS

Bus 
system

39-bus 
(DC)

(DC) 
118-bus

39-bus 
(AC)

118-bus 
(AC)

300-bus 
(DC)

500-bus 
(DC)

Input 
layer

85

304

117

354

711

1097

Hidden layer

h1 = 85 ´ 85, h2 = h1 ´ 85, 
h3 = h2 ´ 85

h1 = 304 ´ 304, h2 = h1 ´
304, h3 = h2 ´ 304

h1 = 117 ´ 117, h2 = h1 ´
117, ..., h6 = h5 ´ 117

h1 = 354 ´ 354, h2 = h1 ´
354, ..., h6 = h5 ´ 354

h1 = 711 ´ 711, h2 = h1 ´
711, ..., h6 = h5 ´ 711

h1 = 1097 ´ 1097, h2 = h1 ´
1097, ..., h6 = h5 ´ 1097

Output layer

38 (for voltage angle)

118 (for voltage angle)

77 (38 for voltage angle 
and 39 for voltage 

magnitude)

236 (118 for voltage angle 
and 118 for voltage 

magnitude)

300 (for voltage angle)

500 (for voltage angle)

Figures 2 and 3 demonstrate the voltage angle and voltage 

Algorithm 2: FDI attack detection

1: Input: Dataset{(Y, X)}
2: procedure DETECT(Y )
3:   function OFFLDETECTION(Y )
4:     for each y in Y do
5:      Evaluate x̂ using Algorithm 1
6:      Evaluate mDx̂ as well as lDx

7:      Λhist¬∑mDx̂ log2( )mDx̂

lDx

8:      Evaluate τ using (6) and Λhist                                              
9:      return τ
10:   end for
11:  end function
12: function ONLDETECTION(y)                                                 
13:    for each smart meter measurement do
14:      Compute x̂ and mDx̂

15:      Λ¬∑mDx̂ log2( )mDx̂

lDx

16:      if Λ(x̂)³ τ then FDI attack detected
17:      end if
18:      if Λ(x̂)< τ then no FDI attack detected
19:      end if
20:    end for
21: end function
22: end procedure

TABLE II
THRESHOLDS OF Dx FOR 1-YEAR DATA

ρ (%)

95.0

98.0

99.0

99.5

99.9

z value

2.330

2.576

2.807

3.291

3.291

KL threshold 

Without attack

0.0653

0.0684

0.0695

0.0700

0.0704

With attack

2.4637

2.4891

2.4975

2.5017

2.5051

TABLE III
THRESHOLDS OF Dx FOR 5-YEAR DATA

ρ (%)

95.0

98.0

99.0

99.5

99.9

z value

1.960

2.330

2.576

2.807

3.291

KL threshold

Without attack

0.2223

0.2262

0.2275

0.2282

0.2287

With attack

2.0764

2.0992

2.1068

2.1106

2.1136
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magnitude predictions of the proposed state prediction model 
and WLS state estimator for IEEE 118-bus and 39-bus sys‐
tems, respectively. In Fig. 2 and Fig. 3, the predictions are 
evaluated using unseen test sets.

Additionally, to see the efficiency of the proposed model, 
it has been evaluated using additional unseen data of four 
different weeks (labeled as week-27, week-28, week-29, and 
week-52). This is demonstrated in Fig. 4, implemented using 
DRNN of the proposed model. Additionally, to assess the 
scalability of the proposed predictive SE method, two larger 
power system test cases are used: IEEE 300-bus and AC‐
TIVSg 500-bus systems. The plots using the IEEE 300-bus 
and ACTIVSg 500-bus benchmarks are shown in Fig. 5. In 
fact, increasing the number of buses of the power grid can 
also increase the number of measurement points significant‐
ly. This, of course, poses a computational complexity to‐
wards the learner. However, such challenges can be alleviat‐
ed by deploying sufficient number of computing devices 
such as high-bandwidth GPUs or RAMs and/or leveraging 
feature selection techniques.

The prediction performance of the proposed model is also 
evaluated against topology changes. This part is assessed in 
accordance with Assumptions 1 and 2 using the IEEE 300-
bus and ACTIVSg 500-bus systems. The aim of this experi‐
ment is to evaluate the performance of the predictive SE 
model if the underlying network topology changes (e. g., 
such topology updates can be obtained from the network to‐
pology processor). In this regard, topology configurations of 

some selected networks of the IEEE 300-bus and ACTIVSg 
500-bus systems have been randomly modified. Only 5 sets 
of configurations are modified in the IEEE 300-bus system, 
while 10 sets of configurations are modified in the AC‐
TIVSg 500-bus system.

The sets of configurations are parts of the Jacobian matri‐
ces H and are generated from MATPOWER [25]. For each 
configuration, various scaling factors are used to get the to‐
pology change. Accordingly, datasets are generated and used 
for evaluating the prediction performance of the DNN mod‐
el. The results of SE using the proposed approach and WLS-
based SE are shown in Fig. 5 for the IEEE 300-bus and AC‐
TIVSg 500-bus systems.

Numerical results demonstrate that the proposed state pre‐
diction is very comparable to the conventional WLS estima‐
tor whose estimation error is acceptable for the purposes of 
power system SE. Except for the AC power flow in Fig. 3, 
where the DFFNN deteriorates with less prediction results 
than that of the WLS, the DRNN can perform estimations 
very close to the result of the WLS estimator.

Furthermore, the performance of the predictive SE is eval‐
uated through the metric MSE. The MSE is defined as (7) 
for a total number of n states and d observations.

MSE(x - x̂)=
1
d∑t = 1

d ( )1
n∑i = 1

n

(xt
i - x̂t

i )
2 (7)

The performance evaluation in terms of the MSE with the 
different models for IEEE 39-bus and 118-bus systems is 
shown in Table VI.
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Fig. 3.　Voltage magnitude prediction of proposed state prediction model 
and WLS state estimator. (a) IEEE 118-bus system. (b) IEEE 39-bus system.
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Fig. 2.　Voltage angle prediction of proposed state prediction model and 
WLS state estimator. (a) IEEE 118-bus system. (b) IEEE 39-bus system.
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V. ADVERSARY MODELS

Attackers come up with different adversarial strategies 
whereby the final effect of the malicious data leads to dam‐
age the state variables across the power system domain. Gen‐
erally, there are two main FDI anomaly strategies for power 
system measurement models. One requires knowledge of 
power system topology [4], and the other is based on a data-
driven approach also known as the blind FDI attack strate‐
gy [26].

The vulnerability of the detection module to adversarial 
ML is analyzed as follows. Although the main assumption of 
adversarial model considered in this paper is the false injec‐
tion attack, coordinated adversarial ML attacks can also be 
potential challenges against the proposed cyber-attack detec‐
tion or decision-making module. The adversarial ML may 
bring inconsistencies against the model during its training 
and retraining phases and introduce errors into unseen datas‐
ets, thereby creating a confusion over a previously trained 
detection model. Overall, such threat models can cause the 
ML model to make a wrong decision or misclassifications 
and affect its detection performance. This current work as‐
sumes that the cyber-physical processes involved include da‐
ta sensing, communication, and decision-making using the 
ML module. While the false injection attack is against the da‐
ta integrity of the smart grid, the adversarial ML attack can 
be like poisoning or evasion attack against the ML module.

Therefore, the whole cyber-physical process is considering 
the false injection attack during the communication and/or in‐
jection across the sensors. As a result, we limit the scope of 
this paper to just the cyber-attack against the data integrity 
(i.e., the FDI attack).

The adversary is assumed to have access to the network 
topology. In particular, two realistic attack models are exam‐
ined: random FDI attack and targeted FDI attack. While the 
former aims to inject an attack vector to the measurement 
quantities that will lead to a falsified estimate of state vec‐
tors, the latter aims to find an attack vector that can inject ar‐
bitrary errors into some state vectors.

A. Adversary Model I

Here, it is assumed that the adversary can have access on‐
ly to some κ sensor readings (where κ ³m - n + 1). This may 
be due to the fact that some sensors have specific physical 

Ground truth system state; SE using WLS (before topology change)

SE using WLS (after topology change)
SE using DRNN (before topology change)
SE using DRNN (after topology change)
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Fig. 5.　 Voltage angle prediction before and after topology changes. (a) 
IEEE 300-bus system. (b) ACTIVSg 500-bus system.
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Fig. 4.　Evaluation of proposed state prediction model using various unseen 
datasets (DC power flow). (a) IEEE 118-bus system. (b) IEEE 39-bus sys‐
tem.

TABLE VI
PERFORMANCE EVALUATION IN TERMS OF MSE WITH DIFFERENT MODELS 

FOR IEEE 39-BUS AND 118-BUS SYSTEMS

Type

DC

AC

Prediction model

WLS

DFFNN

DRNN

WLS

DFFNN

DRNN

MSE

IEEE 39-bus system

6.13 ´ 10-3

4.65 ´ 10-3

2.50 ´ 10-3

3.92 ´ 10-3

7.57 ´10-3

2.15 ´ 10-3

IEEE 118-bus system

8.34 ´ 10-3

5.96 ´ 10-3

3.52 ´ 10-3

5.34 ´ 10-3

8.21 ´ 10-3

3.18 ´ 10-3
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defences or may be beyond the reach of the adversary. Let 
Im ={I1I2...Iκ} be the set of indices of sensors. According 
to Theorem II in [4], the adversary can compromise κ sen‐
sors under the following conditions:

a(i)=
ì
í
î

Hb    iÎ Im

0        iÏ Im
(6)

Algorithm 3 illustrates the implementation of this attack 
model used in our case scenario. In Algorithm 3, the 
ATTACKCONS(×) procedure (with κ, H, and y arguments) 
generates the attack vector a(i) and adds this attack vector to 
the measurement vector y(i) of k meters. randi(×) and randn(×) 
are random number generator functions where the former is 
used to generate the set of meters and the latter is used to 
generate non-zero numbers of the k-sparse attack vector. The 
zeros(×) function returns an array of zeros whose size corre‐
sponds to the non-compromised sensor indices.

B. Adversary Model II

Here we consider a targeted FDI attack where the adver‐
sary intends to inject bad data into certain chosen state vec‐
tors. Again, for a successful FDI attack, we assume that the 
adversary has the knowledge of the network topology such 
as bus and chosen state vectors. Suppose the adversary has 
chosen ζ < n set of state variables x1x2...xζi

, where ζi =
{12...ζ} is the position of the subset of state vectors. In 
this model of the attack, the adversary aims to construct 
x false = x̂ + b. Details of the construction of this attack model 
are given in [4].

VI. NUMERICAL RESULTS AND DISCUSSION OF PROPOSED 
SPAD FRAMEWORK

A. Quantifying KL Metric of Detector

Here, we present scenarios to justify the performance of 
the data-driven KL metric for the detection of bad data injec‐
tion. The scenarios demonstrated in this subsection are based 
on the adversary model I. The histogram of state variations 
of normal and injections of false data are demonstrated in 
Fig. 6 for the 1-year and 5-year data. The mean differences 
in the distribution between these two classes of data are also 
shown in Fig. 6. In addition, the computation results of the 
KL distance are demonstrated in Fig. 7 and Fig. 8, respec‐
tively, for the 1-year and 5-year data. In general, for both da‐
ta cases, there is a distinction between the histogram of the 
KL values of the normal and the tampered traffic, and the 

plots of KL values of these two classes. However, the results 
also show that the dissimilarity between the normal and the 
tampered traffic is more noticeable under the 1-year data 
compared with the 5-year data, mainly due to the difference 
in the load profile as the latter covers a wide range of 5-year 
data. Finally, while Fig. 9 illustrates the cumulative distribu‐
tion function (CDF) between the ground truth and predicted 
states of the KL distance of the 1-year and the 5-year data. 
Therefore, the results shown in Figs. 6-9 confirm that power 
system states at normal operating conditions have almost 
similar estimations provided that the topology remains the 
same. However, when FDI attack is injected to some of the 
measurement data, it results in a different SE in the control 
center. These results are, in particular, owing to the com‐
bined data-driven approach for prediction of power system 
states and KL distance metric based attack detection.

B. Detection Performance

The detection module is trained through the KL values of 
the predicted state vectors. ROC curve, AUC, recall and pre‐
cision are employed for the detection performance. The per‐
formance of ROC is evaluated in terms of the probability of 
correctly classifying the computed KL distance of the pre‐
dicted states as either attack-free or manipulated data using 
the decision rule given by (5). The ROC curve, which is a 
plot of FPR v. s. TPR, is obtained by varying the decision 
thresholds. FPR and TPR are defined as (9) and (10), respec‐
tively. Additionally, the recall and precision are given by 
(11) and (12), respectively.

FPR =
FP

FP + TN
(9)

Algorithm 3: adversary model I

1: Input: κ, H, y
2: Output: yfalse

3: procedure ATTACKCONS(κ, H, y)                                               
4: Iκ¬randi([1m]1κ)
5: if iÎ Iκ then
6:  a(i)¬H ´ randn(κ1)                                                              
7:  yfalse(i)¬y(i)+ a(i)                                                                 
8: end if
9: if iÏ Iκ then
10:  a(i)¬zeros(κ1)                                                                   
11:  end if
12: end procedure

Fig. 6.　Histogram of state variations without and with FDI attack. (a) 1-
year data. (b) 5-year data.
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TPR =
TP

TP +FN
(10)

Recall =
TP

FN + TP
(11)

Precision =
TP

FP + TP
(12)

where TP represents the successfully identified FDI attacks; 
FP represents the number of states that are wrongly classi‐
fied as FDI attacks; and FN represents the number of states 
that are wrongly classified as normal.

The proposed detection performance is compared against 
χ2 distribution test, and with one of recent findings on KL 
metric based FDI attack detection using WLS estimation 
[16]. For the χ2 distribution test, the ℓ2-norm is computed 
based on the residuals between the actual and the WLS pre‐
dicted values using a degree of freedom given by m - n. Sim‐
ilarly, to compare with the other technique, the KL of Dx de‐
noting the difference between WLS-predicted states and the 
actual states is computed.

C. Attack Scenarios

To perform the FDI attack detection, three attack scenari‐
os are considered. For each scenario, 12000 samples are 
used.
1)　Attack Scenario I

For attack simulation of the IEEE 118-bus system, we as‐
sume that the adversary has access to k = 190 measurement 
meters, a condition that satisfies the criteria k ³m - n + 1 [4]. 
The attack vector is generated following implementation Al‐
gorithm 3 and (6). Figure 10 shows the attack detection re‐
sults in this attack scenario. In this case, the proposed sys‐
tem has a much better detection performance than the BDD 
and existing KL-based FDI attack detection technique. The 
BDD has very poor performance in detecting the FDI anoma‐
lies. The KL-based FDI attack detection technique demon‐
strates better detection results compared with the BDD. How‐
ever, as the KL metric is dependent on the WLS estimation 
result, its detection performance is still less than the pro‐
posed SPAD framework.
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Fig. 10.　Attack detection results using 5-year data in attack scenario I.

2)　Attack Scenarios II and III
These two case scenarios are based on the targeted FDI at‐

tack. When the adversary manipulates the state variables, the 
measurements associated with these elements will be tem‐
pered. To inject the bad data, we simulate the bias vector b 
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Fig. 7.　KL distances of 1-year data (with and without FDI attack). (a) KL 
of predicted states (without FDI attack). (b) KL of predicted states (with 
FDI attack). (c) KL distance.
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Fig. 8.　KL distances of 5-year data (with and without FDI attack). (a) KL 
of predicted states (without FDI attack). (b) KL of predicted states (with 
FDI attack). (c) KL distance.
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to be added on each of the 118 state variables of the power 
network using different settings. First, we use a 10% in‐
crease from the initial state value (here referred to as attack 
scenario II). Then, we increase the bad data by 40%, which 
means xflase = x + 0.4x (attack scenario III). In both attack sce‐
narios, although the proposed SPAD framework outperforms 
existing techniques, its classification accuracy deteriorates 
when the magnitude of the attacks are too small. However, 
as the magnitude of the attacks increases, so does the KL 
distance, which leads to a much higher probability of attack 
detection by the SPAD framework. Figures 11 and 12 are 
the attack detection results for these two attack scenarios. Ta‐
ble VII demonstrates the detection performance of the pro‐
posed SPAD framework in terms of AUC, precision and re‐
call considering both the DC and AC optimal power flows. 
From the detection numerical results we can conclude that 
the BDDs are vulnerable to the FDI attack models. In con‐
trast, our proposed scheme has much better detection rate 
compared with the existing KL-based FDI attack detection 
and the BDD.

VII. CONCLUSION

This research work identifies vulnerabilities of existing 
power system SEs against the FDI attack and proposes data-
driven state prediction and defence strategies to ensure the 
data integrity of power systems. In particular, the proposed 
SPAD framework is formulated using DL, where a predic‐
tive SE is deployed for estimating the system states, and a 
KL metric-based detection leverages the predicted states. Ac‐
cordingly, an attack alert is generated when the computed 
KL value of the predicted states is greater than the decision 
threshold. Numerical simulations show that under normal op‐
erating conditions of the power system, there occurs only a 
minimal dissimilarity between consecutive state vectors; 
however, the KL score rises when falsified measurement da‐
ta is injected into the meter readings. The proposed SPAD 
framework detects FDI attacks with a higher accuracy com‐
pared with the existing FDI attack detection algorithms. In 
the future, given low-dimensional properties of power sys‐
tem measurement data and sparsity properties of the FDI at‐
tack, attack localization can be explored using data-driven 
techniques. Furthermore, to deter the growing challenges of 
data integrity cyber-attacks, a comprehensive data-driven ap‐
proach of FDI attack construction and cyber defence strategy 
can be proposed leveraging state-of-the-art DL, reinforce‐
ment learning, or deep reinforcement learning models along 
with optimization approaches. Finally, ML adversarial at‐
tacks can exploit the ML-based cyber-attack detection of the 
smart grid SE and can inject bad data to the decision-mak‐
ing module. Hence, cyber-attack detection against the ML ad‐
versarial attacks is recommended as an open research issue.
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