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Coordinated Dispatch Based on Distributed Robust 
Optimization for Interconnected Urban Integrated 

Energy and Transmission Systems
Wei Xu, Yufeng Guo, Tianhui Meng, Yingwei Wang, and Jilai Yu

Abstract——To improve the economic efficiency of urban inte‐
grated energy systems (UIESs) and mitigate day-ahead dispatch 
uncertainty, this paper presents an interconnected UIES and 
transmission system (TS) model based on distributed robust op‐
timization. First, interconnections are established between a TS 
and multiple UIESs, as well as among different UIESs, each in‐
corporating multiple energy forms. The Bregman alternating di‐
rection method with multipliers (BADMM) is then applied to 
multi-block problems, ensuring the privacy of each energy sys‐
tem operator (ESO). Second, robust optimization based on 
wind probability distribution information is implemented for 
each ESO to address dispatch uncertainty. The column and con‐
straint generation (C&CG) algorithm is then employed to solve 
the robust model. Third, to tackle the convergence and practica‐
bility issues overlooked in the existing studies, an external 
C&CG with an internal BADMM and corresponding accelera‐
tion strategy is devised. Finally, numerical results demonstrate 
that the adoption of the proposed model and method for ab‐
sorbing wind power and managing its uncertainty results in eco‐
nomic benefits.

Index Terms——Distributed robust optimization, distributional‐
ly robust dispatch, urban integrated energy system, transmis‐
sion system, external column and constraint generation 
(C&CG), internal Bregman alternating direction method with 
multipliers (BADMM).
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B. Parameters

α1, α¥

αbuy
mt

αtra
wt

Sets of heat supplies and return pipelines in 
UIES

Sets of heat supply pipelines with node o as 
end and starting points

Set of all nodes in gas network

Sets of gas branches with and without com‐
pressors

Sets of heat return pipelines with node o as 
end and starting points

Index of gas purchase nodes of UIES

Sets of gas purchase and gas load nodes in 
UIESk

Indices of electrical, heat, and gas loads in 
UIES

Indices of electrical boiler (EB), gas boiler 
(GB), and gas turbine (GT)

Set of components connected to gas node m

Index of heat sources

Indices of distribution lines, gas pipelines, and 
heat pipelines in UIES

Indices of electrical and heat nodes in UIES

Indices of gas nodes

Indices of UIESs, denoting as UIESk and 
UIESu

Sets of wind scenarios in TS and UIES

Indices of iterations for Bregman alternating 
direction method with multipliers (BADMM) 
and column and constraint generation (C&CG)

Index of time periods

Index of generators in TS

Indices of energy production and conversion 
equipment

Uncertainty probability confidence values for 
1-norm and ∞-norm constraints

Intraday gas purchase volume variation limit 
from day-ahead plan

Intraday output variation limit from day-ahead 
plan for energy conversion devices
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D. Variables
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vt ,
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Convergence tolerance of C&CG algorithm

Primal and dual residuals in the sth  iteration 
of BADMM algorithm

Allowable probability deviation limits under 1-
norm and ∞-norm constraints

Compressor factor

Penalty parameter of Lagrange function

Water density and specific heat capacity

Water transmission time of hf

Limit value of gas pressure change during ad‐
jacent periods

Limit value of gas pressure change in intraday 
stage relative to day-ahead stage

Limit value of temperature change during adja‐
cent periods

Limit value of temperature change in intraday 
stage relative to day-ahead stage

Upper and lower bounds of gas load curtail‐
ment

Weymouth coefficient of mn

Convergence tolerance of primal and dual re‐
siduals of BADMM

Predictive heat and gas loads

Length and diameter of hf

Numbers of selected wind samples and extract‐
ed scenarios

Water mass flow rates of heat load, heat 
source, and heat pipeline

Upper and lower pressure limits of gas node n

The maximum capacities of tie lines between 
TS and UIESk, and UIESk and UIESu

The minimum and maximum gas purchase vol‐
umes

Ramp up and down rate limits of generator

Variable and parameter of day-ahead stage

Optimal result of variables or functions

Unified representation of energy production 
equipment such as GT and GB

Variable and parameter of the rth intraday wind 
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Unified representation of energy conversion 
equipment such as waste heat boiler (WHB) 
and EB

Variables and parameters of TS and UIES
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Auxiliary variables replacing objectives of TS 
and UIESk subproblems

Intraday output variation of energy production 
equipment and energy conversion equipment
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Output increment and decrement of energy pro‐
duction equipment

Output increment and decrement of energy 
conversion equipment

Heat and gas load curtailments in UIES

Electrical load curtailments in TS and UIES

Generator output volume variation

Gas purchase volume variation

Dispatched heat and gas loads

Heat power of heat source

Power on both sides of tie line between TS 
and UIESk

Power on both sides of tie line between UIESk 
and UIESu

Power outputs of GT and generator

Gas nodal pressures

Probability of the rth intraday wind scenario

Gas flow of mn

Gas purchase volume plan

Gas inputs of GT and GB

Dispatched gas load

Dispatched up and down reserves of generator 
in TS

Dispatched up and down reserves of produc‐
tion equipment in UIES

Temperatures at outlet and inlet of supply 
pipelines

Temperatures at outlet and inlet of return pipe‐
lines

Outlet and inlet temperatures of hf

Temperatures of heat source nodes in heat sup‐
ply and return pipelines

Temperatures of heat load nodes in heat sup‐
ply and return pipelines

Mixed temperatures at node o in heat supply 
and return pipelines

Lagrange multiplier

Wind scenario parameters for TS and UIESk

Coefficient matrices for coupling constraints

Functions corresponding to all constraints of 
master problem (MP) for TS and upper bounds

Functions corresponding to all constraints of 
MP for UIESk and upper bounds

Probability distribution variables for wind sce‐
narios in TS and UIESk

Day-ahead problem variables for TS and UIESk

Intraday problem variables for TS and UIESk
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I. INTRODUCTION

AS distributed generation (DG) sources have become 
prevalent in urban integrated energy systems (UIESs), 

both active energy suppliers and distributors operate in ur‐
ban areas to serve consumers. The optimal utilization of reg‐
ulating resources can be achieved through holistic intercon‐
nection strategies between UIESs and transmission systems 
(TSs), facilitating new energy surplus absorption and mitigat‐
ing weak system stability. Moreover, the coupling of diverse 
energy sources such as electricity, gas, and heat is becoming 
increasingly complex, with various energy conversions en‐
abling the full utilization of new energy resources.

Current research works on energy system coordination are 
primarily divided into two categories: collaboration between 
integrated energy systems (IESs) and collaboration within 
TSs and distribution systems. References [1] and [2] propose 
a distributed dispatch strategy for joint transmission and dis‐
tribution optimization considering distribution system flexi‐
bility. Reference [3] presents a cooperative optimal dispatch 
of TSs and distribution systems based on a two-stage robust 
optimization (RO), leveraging the adjustment capacity of 
TSs and distribution systems for wind power intermittency 
and uncertainty. References [4] and [5] utilize the alternating 
target cascade (ATC) algorithm for coordination among mi‐
crogrids, accounting for renewable energy uncertainty. Refer‐
ence [6] shows that the interconnected dispatch of energy 
systems across regions using distributed algorithms, and RO 
enhances the economy of the entire system. In previous stud‐
ies which examine the interconnection of TSs and distribu‐

tion system, the emphasis is largely on the coupling of pow‐
er energy, overlooking the growing integration of multiple 
energy sources in urban distribution systems. Consequently, 
by concurrently considering the connections between TS and 
multiple UIESs and the interconnections among different 
UIESs [7], we can ensure the thorough utilization of diverse 
energy resources and foster mutual support among energy 
systems.

The coordinated optimization of different subsystems of‐
ten encounters privacy protection challenges, prompting the 
use of distributed methods for interregional coordination. 
These methods typically require minimal interregional inter‐
action variables. Notable examples include ATC algorithm 
[8], [9] and the alternating direction multiplier method (AD‐
MM) [10]-[12]. However, these algorithms and methods pri‐
marily involve information-flow interactions between two 
parties or levels, essentially addressing “2-block” problems 
or their combinations. The convergence for “N-block” prob‐
lems can be challenging [13]. Reference [14] extends the 
ADMM and proposes the prediction-correction-based AD‐
MM (PCB-ADMM) to solve multiple separable problems. 
This method has been applied to collaborative optimization 
of electrical-gas-heat system [15] and coordination of trans‐
mission system operator and distribution system operator 
(TSO-DSO) [16]. Nevertheless, the acceleration of multi-
block distributed algorithms remains a promising avenue for 
further research. A comparison between proposed and state-
of-the-art methods is presented in Table I, where ARO is 
short for adaptive RO.

The day-ahead dispatch optimization of energy systems 
has garnered considerable research attention. As a myriad of 
new energy sources connected to the power grid, distribution‐
ally robust optimization (DRO) has emerged as a research ar‐
ea that addresses the uncertainty arising from these new ener‐
gy sources. DRO synergizes the advantages of stochastic and 
RO methods, reflecting the probability distribution informa‐
tion of new energy sources while maintaining conservative‐
ness. In [18], a fuzzy set of wind power prediction errors is 
constructed based on historical wind power moment informa‐
tion, and a coupled DRO dispatch model of an electricity-

gas system is established using dual transformation. Refer‐
ence [19] investigates generalized energy storage resources 
within a park-level IES and develops a DRO model based 
on the Wasserstein distance [20] to address wind power un‐
certainty. Reference [21] employs a data-driven distributed 
robust method to optimize the reactive power in a distribu‐
tion system. UIESs involve numerous energy networks, re‐
sulting in mathematical models with numerous constraint 
variables. Conventional RO [22], [23] requires dual transfor‐
mation of the inner-layer problem by introducing numerous 
non-convex terms. DRO based on the Wasserstein distance 

TABLE I
COMPARISONS BETWEEN PROPOSED AND STATE-OF-THE-ART METHODS

Reference

[3]

[4]

[6]

[7]

[8]

[11]

[12]

[15]

[17]

This paper

System modeling

Transmission

√
×

×

×

×

√
√
×

×

√

Distribution

√
√
√
√
√
×

√
√
√
√

Gas

×

×

√
√
√
√
×

√
×

√

Heat

×

×

√
√
√
×

×

√
×

√

Uncertainty 
modeling

RO

RO

RO

RO

RO

RO

SO

RO

ARO

DRO

Method

Outer

ADMM

ATC

ADMM

ADMM

ATC

ADMM

ADMM

PCB-ADMM

AUP

C&CG

Inner

C&CG

C&CG

C&CG

C&CG

C&CG

-

-

C&CG

ADMM

BADMM

Accelerated strategy

√
×

×

×

×

×

×

×

×

√

Multi-block

×

×

×

×

×

×

×

√
×

√
Note: √ and × indicate whether the item is considered in the listed references, respectively.
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requires that multiple scenarios should be considered. Due to 
computational resource constraints, few studies have been 
conducted on robust IES dispatch while considering network 
dynamics. The data-driven method requires only the probabil‐
ity information of typical scenarios and avoids complex dual 
transformations, making it suitable for intricate models.

The column-and-constraint generation (C&CG) algorithm 
[24] is commonly used to solve the two-stage RO. Several 
studies have combined distributed algorithms with the 
C&CG algorithm. Reference [25] integrates the ATC and 
C&CG algorithms for hierarchical and robust dispatch in AC/
DC hybrid systems. Reference [26] combines the ADMM 
and C&CG algorithms to address the voltage optimization 
problem. In these studies, the distributed algorithm serves as 
the external framework, and the C&CG algorithm is the spe‐
cific solution framework for each iteration [27], [28]. How‐
ever, the solution process does not ensure convergence. The 
main reason for this is that the worst-case-scenario set of the 
master problem (MP) changes after each iteration of C&CG 
algorithm, meaning that the constraints of each problem 
solved by the distributed algorithm constantly shift. This 
makes it difficult to prove that the convergence condition of 
the distributed algorithm is ultimately achieved. Reference 
[17] introduces the alternating uncertainty-update procedure 
(AUP) to overcome the issues mentioned above. Few studies 
have demonstrated the convergence of distributed algorithms 
when combined with C&CG.

Based on the aforementioned discussion, the distributed ro‐
bust joint dispatch of TS and distribution system (DS) faces 
the following challenges. The urban DS is evolving into a 
system with deep coupling of multiple energy sources, intro‐
ducing new dispatch complexities, and the convergence and 
practicality of the combined distributed and C&CG algo‐
rithms still have room for improvement. To address these is‐
sues, this paper investigates both the modeling and solution 
methodologies. The main contributions of this paper are sum‐
marized as follows:

1) We introduce a novel interconnected energy system 
model that expands transmission and distribution dispatch to 
include multiple energy forms. In this model, the UIES is di‐
rectly linked to both the TS and other UIESs to further en‐
hance privacy protection and strengthen mutual support capa‐
bilities.

2) The Bregman alternating direction method with multi‐
pliers (BADMM) is employed to coordinate the dispatches 
of energy system operators (ESOs) to ensure the privacy of 
each ESO. The BADMM overcomes the constraints inherent 
in the traditional ADMM when addressing multi-block prob‐
lems. The C&CG algorithm is also applied to address the 
DRO problem of each ESO.

3) To ensure the convergence and practicality of distribut‐
ed robust dispatch, we devise a framework that nests the in‐
ternal BADMM in an external C&CG and introduces acceler‐
ation strategies based on structural characteristics of the 
framework. The framework ensures the theoretical conver‐
gence of the problem, whereas the strategies enhance the 
convergence speed.

II. CONCEPT AND STRUCTURE OF PROPOSED MODEL

A. Structure of Joint TS and UIESs

Compared with traditional joint transmission and distribu‐
tion dispatch, two aspects are expanded.

1) Energy diversity expansion: we diversify the urban en‐
ergy categories by transitioning from sole electrical energy 
to electrical, gas, and heat energies.

2) UIES interconnection enhancement: UIES establishes 
connections with TS and other UIESs. The design is used to 
preserve the confidentiality of each ESO, ensuring that the 
transactional information between systems is not disclosed to 
other systems.

In each energy system, there is an ESO for energy plan‐
ning and trading with other systems. Figure 1 shows the 
schematic of energy interconnection structure. WT, PV, GT, 
GB, WHB, and EB are short for wind turbine, photovoltaic, 
gas turbine, gas boiler, waste heat boiler, and electrical boil‐
er, respectively. Energy is transmitted between systems 
through tie lines, a data-driven DRO is utilized within each 
ESO for day-ahead dispatch, and the relevant boundary cou‐
pling variable information is transmitted to the coordination 
dispatch center (CDC) for coordinated dispatch. The CDC is 
responsible for determining convergence and updating rele‐
vant information for all ESOs.

Coupling constraints between UIESk and its superior TS 
and UIESu can be formulated as:

P tu0
kt =P ut0

kt     "kuÎΨ us (1a)

P uu0
kukt =P uu0

kuut    "kuÎΨ us (1b)

In (1a), the transmited power from the TS to UIESk is pos‐
itive, indicating that the TS serves as a virtual power supply 
and UIESk as a virtual load. When it is negative, the situa‐
tion is reversed. The constraint in (1b) is similar to that in 
(1a), where the subscript ku denotes the power transmission 
from UIESk to UIESu.

WT Power unit

ESO

UIES
k

Electricity flow;

Electrical load

UIES
u

Information flow;

CDC

TS

WT PV

EB

GT GB

Electrical loadHeat load

WHB

ESO

Gas load

�

Tie line

Fig. 1.　Schematic of energy interconnection structure.
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B. Framework of Fuzzy Set and Robust Model

1) Fuzzy Set
In conventional RO, the box uncertainty set characterizes 

the uncertain variables, leading to overly conservative results.
This paper employs a data-driven DRO algorithm to ad‐

dress conservatism as shown in (2), and pr satisfies the con‐
ditions given in (3).

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï
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í
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ïïïï

ï
ïï
ï
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ì
í
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ü
ý
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∑
rÎR

|pr - p0
r | £ θ1 ³ 1 - 2Re-2Mθ1 /R

Pr{|pr - p0
r | £ θ¥}³ 1 - 2Re-2Mθ¥

(3)

Then, θ1 and θ¥ satisfy:

ì

í

î

ï
ïï
ï

ï
ïï
ï

θ1 =
R

2M
ln

2R
1 - α1

θ¥ =
1

2M
ln

2R
1 - α¥

(4)

2) Robust Model of Entire System
The objective function of the optimal overall cost of the 

TS and UIESs can be expressed as (5). f ts1, f us1 and f ts2, f us2 
are the objective functions for the day-ahead and intraday 
stages, respectively.

min
x ts

{ f ts1 (x ts )+ max
ptsÎΩts

min
yts

f ts2 (ytsμtsp ts )}+

min
x us

k

ì
í
î

ü
ý
þ

∑
k

( f us1
k (x us

k )+ max
pus

k ÎΩ
us
k

min
yus

k

f us2
k (yus

k μ
us
k p

us
k )) (5)

In the two-layer robust dispatch model, the inner layer 
“max-min”, which is based on the day-ahead dispatch plan 
from the outer layer “min”, is optimized to obtain the most 
beneficial adjustment results in the wind scenarios of ad‐
verse probability distribution within the day. The outer layer, 
based on the adverse intraday wind scenario probability dis‐
tribution derived from the inner layer, establishes the most 
cost-efficient day-ahead dispatch plan.

III. TS MODEL

A. Objective Function

min
ì
í
î
∑
tÎ T

( ft
th0 + ft

wp0 + ft
el0 + ft

tr0 ) max
prÎΩ

ts
min ∑

rÎRts

pr∑
tÎ T

(Dft
thr +

ü
ý
þ

ft
wpr + ft

elr ) (6)

The specific expression of the objective function is provid‐
ed in [29]. The day-ahead objective function considers the 
minimum generator cost ft

th0, wind curtailment ft
wp0, load 

limit cost f el0
t , and electricity transmission cost ft

tr0. The in‐
traday objective function is the regulation cost, which con‐

sists of the generator output adjustment cost Df thr
t , wind cur‐

tailment cost ft
wpr, and load curtailment cost f elr

t .

B. Constraints

1) Day-ahead Constraints
The day-ahead constraints of the TS include power bal‐

ance, generator plan, wind farm plan, load plan, DC current 
security, and tie-line constraints of TS and UIES. The pre‐
cise expressions can be found in [29].
2) Intraday Adjustment Constraints

In addition to the constraints obtained by replacing the 
day-ahead constraint variables with intraday scenario vari‐
ables, the intraday constraints also consist of fuzzy set con‐
straints (2) - (4) of wind power distribution and adjustment 
constraints (7) and (8).

ì

í

î

ïïïï

ï
ïï
ï

P thr
tmt =P th0

tmt +DP thr +
tmt -DP thr -
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tmt -Rgd

tmt £P thr
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tmt +Rgu
tmt

-Dth
tmtDt £P thr

tmt -P thr
tmt - 1 £U th

tmtDt

(7)

0 £DP  elr
dt £DP  el0

dt (8)

IV. UIES MODEL

We next establish a UIESk model using one UIES as an 
example. “k” is the index of UIES. For simplicity, we omit 
it in the variable representation.

A. Objective Function

min
ì
í
î
∑
tÎ T

( f buy0
t + f wp0

t + f ld0
t + f tr0

t ) + max
prÎ   Ωus

∑
rÎRus

pr min(Df gtr
t +

ü
ý
þ

Df gbr
t +Df ebr

t + f wpr
t + f ldr

t +Df buyr
t ) (9)

The specific expression of the objective function is pre‐
sented in [29]. The day-ahead objective function considers 
gas costs f buy0

t , f wp0
t , flexible load dispatch costs f ld0

t , and 
ft

tr0. The intraday phase responds to wind scenarios of ad‐
verse probability distribution by adjusting rapidly adjustable 
equipment and altering gas purchase volume. The objective 
function includes production equipment adjustment costs 
Df gtr

t , Df gbr
t , Df ebr

t , gas purchase adjustment cost Df buyr
t , 

f wpr
t , and flexible load invocation cost f ldr

t .

B. Day-ahead Constraints

1) DS Constraints
These constraints consist DS and load-related constraints. 

The precise expressions and undefined variables can be 
found in [29].
2) Gas Network Constraints

A steady-state equation is employed for the gas network. 
The UIESk gas network constraints consist of flow balance 
constraint (10), nodal pressure constraint (11), gas load limit 
constraint (12), compressor constraint (13), gas purchase vol‐
ume constraint (14), and second-order cone programming-re‐
laxed Weymouth equation (15), while this relaxation is not 
invariably tight but is chosen for its computational efficiency 
and manageability [30].
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0
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min £Qbuy0
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ì
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||Q0
mntCmn p0

nt||2 £Cmn p0
mt

p0
mt ³ p0

nt

    "mnÎΩNGC (15)

3) Heat Network Constraints
The heat network constraints consist of the production 

heat of the heat source nodes and their node temperature 
constraint (16), the heat demand of the heat load nodes and 
their node temperature constraint (17), and the mixed-node 
hot water temperature constraint (18).

{H ss0
hst = cmhst (T

ss0
hst - T s r0

hst )

T ss
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=
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Equation (19) expresses τpipe in terms of unit dispatch 
time, placing it between nDt and (n + 1)Dt. Equation (20) il‐
lustrates the temperature of the hot water exiting the pipeline 
is a linear combination of the water temperatures entering 
the pipeline at nDt and (n + 1)Dt moments in the absence of 
losses, where K1 and K2 are the respective weights. And (20) 
illustrates the temperature of water exiting the pipeline at 
time t considering the thermal inertia of heat network.
4) Equipment Constraints

The constraints on the conversion equipment and produc‐
tion equipment are next described. The precise expression 
can be found in [29].

5) Tie-line Constraints

{-P tu
kmax £P ut0

kt £P tu
kmax

-P uu
kumax £P uu0

kukt £P uu
kumax

    "kuÎΨ us (21)

C. Intraday Adjustment Constraints

Similar to TS, intraday adjustment constraints consist of 
fuzzy set constraints (2)-(4) of wind power distribution and 
adjustment constraints. In addition to the constraints ob‐
tained after the day-ahead constraint variables are replaced 
with intraday scenario variables, the other related constraints 
are as follows. In this subsection, the definitions of the unde‐
fined variables can be found in [29].
1) Distribution Network Constraints

The electrical load limit should be less than the day-ahead 
load plan:

DP elr
jt £DP el0

jt (22)

2) Gas Network Constraints
The gas load limit must not exceed the day-ahead dis‐

patch plan. The pressure and its rate of change at each node 
in the natural gas network should be maintained within con‐
trollable ranges [-Dpcrmax

mt , Dpcrmax
mt ] and [-Dpdrmax

mt , Dpdrmax
mt ], 

respectively, to avoid significant deviations from the day-
ahead dispatch plan. In addition, the purchase volume of nat‐
ural gas should vary within a specified range.

DQglr
mt £DQgl0

mt (23)
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3) Heat Network Constraints
The heat load limit should be less than that in the day-

ahead dispatch plan, and the temperature fluctuation of the 
heat network node should be within the range of 
[-DT sl/chmax

ht , DT sl/chmax
ht ].

DH sr
ht £DH s0

ht (26)

{-DT slmax
ht £ T r

ht - T r
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ht
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ht £ T r

ht - T 0
ht £DT chmax

ht
(27)

4) Equipment Constraints
Production capacity and conversion equipment adjust‐

ments must be within a certain range.

{P pror
vt =P pro0

vt +DP pror +
vt -DP pror -

vt

P pro0
vt -Rprod0

vt £P pror
vt £P pro0

vt +Rprou0
vt

(28a)

{P trar
wt =P tra0

wt +DP trar +
wt -DP trar -

wt

(1 - αtra
wt )P

tra0
wt £P trar

wt £(1 + αtra
wt )P

tra0
wt

(28b)

V. SOLUTION METHODOLOGY

The solution methodology for the established model pri‐
marily includes a distributed algorithm among the ESOs and 
a DRO within each ESO.

A. DRO of Intra-ESOs

The subproblems (SPs) of the TS and each UIES are rep‐
resented as two-stage min-max-min models. We use the 
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C&CG algorithm to break down each ESO problem into MP 
and SP. The original problem can be expressed as:

min
x tsx us

k
( )f ts1 (x ts )+∑

k

f us1
k (x us

k ) + (max
pts

min
yts

f ts2 (ytsμtsp ts )+

)∑
k

max
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k

min
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k

f us2
k (yus

k μ
us
k p

us
k ) (29)

s.t.
G(x tsytsμts )£ g (30a)

H(x us
k y

us
k μ

us
k )£h    "k (30b)

The problem can be divided into an MP and an SP accord‐
ing to the steps of C&CG algorithm [24], the expressions of 
which can be found in [29]. It should be noted that the prob‐
ability values of the discrete scenario and intraday variables 
in the SP are independent of each other. We solve the inner 
“min” problem to obtain the optimal intraday variables for 
each scenario. We next address the “max” problem to de‐
rive pr.

B. Distributed Algorithm of Inter-ESO

The conventional ADMM is limited to the convex optimi‐
zation of two separable systems, and ensuring the conver‐
gence of the ADMM in multiple separable systems is chal‐
lenging [31]. Thus, we employ the BADMM to address this 
issue. The BADMM is used to solve the MP for each ESO. 
The coupling constraints between the TS and UIESk as well 
as between UIESk and other UIESs are formulated as:

Ax ts + ∑
kÎΨ us

Bk x us
k = 0 (31)

The BADMM requires a full-row rank matrix for the coef‐
ficient of one system variables in the coupled constraints. 
We introduce an extremely minimal virtual variable within 
the constraints among UIESs to serve as a variable for the 
TS, thus ensuring the applicability of the study to the BAD‐
MM. The pseudocode for the BADMM is presented in Algo‐
rithm 1.

In (33), Dϕ is the Bregman distance associated with the 
function ϕ, which can be expressed as (37). And we let 
ϕ(x)== ||βx||2.

Dϕ (x us
k x

us(s)
k )= ϕ(x us

k )- ϕ(x us(s)
k )- Ñϕ(x us(s)

k )x us
k - x us(s)

k

(37)

C. Modified BADMM and C&CG Coordination Algorithm

In most relevant studies, an externally distributed algo‐
rithm encapsulates the internal C&CG algorithm. This meth‐
odology uses the C&CG algorithm to iteratively obtain the 
optimal solution of MP and SP for each ESO as well as the 
corresponding boundary power variables. This is followed 
by inter-ESO coordination using the BADMM. The distribut‐
ed computation is repeated until convergence is achieved. 
However, convergence cannot be guaranteed. Challenges 
will arise, because prior to the implementation of each BAD‐
MM iteration, the probability set of worse scenarios (ob‐
tained by SP) corresponding to MP of each ESO may 
change after the C&CG algorithm is run. This occurs be‐
cause the values of the dual and coupling variables may dif‐
fer among the BADMM iterations, leading to a different ob‐
jective function when C&CG algorithm is used with the iter‐
ation of each BADMM. As a result, the constraints of MP of 
each ESO, which are the BADMM coordinates, may continu‐
ally change, making it difficult to prove the convergence of 
the algorithm.
1) Framework of Applied Algorithm

The pseudocode for the external C&CG algorithm with 
the internal BADMM is presented in Algorithm 2. The CDC 
manages the following measures.

1) Receive tie-line power values among the ESOs, assess 
the BADMM convergence, and update the Lagrangian and 
penalty parameters.

2) Calculate the optimization results of the MP and  SP  
of each ESO, and then determine both UBsum and LBsum, 
thereby establishing the C&CG convergence.

Algorithm 2: external C&CG algorithm with internal BADMM

Step 1: initialize parameters. The CDC initializes parameters of the BAD‐
MM and C&CG.

Step 2: solve MP using BADMM. The CDC employs the Algorithm 1 to 
solve the MP of the entire system until convergence, whereas the 
ESO’s SP is not considered. CDC obtains the lower bound LBsum of the 
model.

LB(z)
sum = f ts1(z)+ ηts(z)+ ∑

kÎΨ us

( f us1(z)
k + ηus(z)

k )              (38)

Step 3: solve SP for each ESO. The values of the MP variables obtained 
through Step 2 are transmitted to each ESO.

  For each ESO do
    Solve each ESO’s SP in parallel
     If new worse wind distribution probability is obtained
     Then add probability and corresponding constraints to MP
   End for
    CDC obtains the upper bound UBsum of the problem:

UB  (z)
sum =max

ì
í
î

ü
ý
þ

UB  (z - 1)
sum f ts1  (z)* + f ts2 (z)+ ∑

kÎΨ us

( f us1 (z)*
k + f us2 (z)

k )   (39)

Step 4: check convergence. Repeat the above steps until the convergence 
condition is met:

UBsum - LBsum £ εccg           (40)

Algorithm 1: outline of BADMM

Step 1: define the augmented Lagrange function L(·). The corresponding 
augmented Lagrange function for MP of function (5) is given as:

L(x tsxusγ)= f ts1 + ∑
kÎΨ us

f us1
k + ηts +∑

k

ηus
k + γT( )Ax ts + ∑

kÎΨ us

Bk x us
k +

ρ
2


 


Ax ts + ∑

kÎΨ us

Bk x us
k

2

                                     (32)

Step 2: solve the UIESk problem. Add an additional regularization term af‐
ter the Lagrange function. Taking UIESk as an example, obtain the solu‐
tion for the relevant variables:

  x us(s + 1)
k = arg min

x us
k

{L +Dϕ (x us
k x

us(s)
k )} (33)

Step 3: solve the TS problem. Obtain the solution for the TS variables:
x ts(s + 1)= arg min

x ts

{L +Dϕ (x tsx ts(s) )}                    (34)

Step 4: check convergence. The convergence criterion of the aforemen‐
tioned problem can be expressed by the original and dual residuals via 
(35). If there is convergence, terminate; otherwise, go to Step 5.
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         (35)

Step 5: update the Lagrange multipliers. Then, return to Step 2. The updat‐
ing rule is:

γ(s + 1)= γ(s)+ ρ ( )Ax ts(s + 1)+ ∑
kÎΨ us

Bk x us(s + 1)
k           (36)
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This paper employs the external C&CG algorithm with in‐
ternal BADMM to ensure theoretical convergence.

Convergence proof: in theory, the process guarantees final 
convergence. As new constraints are added, the sum of MPs 
of all ESOs satisfies LB(z)

sum⩾LB(z - 1)
sum . For the sum of SPs, it 

satisfies UB(z)
sum⩽UB(z - 1)

sum . Thus, during the iterative process of  
two-stage robust problem of each ESO, the upper bound de‐
creases, the lower bound increases, and both the upper and 
lower bounds converge, thus ensuring that the optimization 
problem for the entire system converges. When the BAD‐
MM has high convergence precision, its solution error has a 
negligible influence on the adverse wind power probability 
distribution generated by the SP. Consequently, using the 
BADMM does not significantly affect C&CG convergence.
2) Acceleration Strategy

The BADMM has a clear structure that facilitates the de‐
sign of acceleration strategies. To expedite the BADMM con‐
vergence, we propose the following strategies.

1) Note that the initial values of the coupling and dual 
variables significantly affect BADMM convergence, we use 
those from the previous C&CG iteration as the initial condi‐
tions for the subsequent C&CG iteration.

2) We apply a dynamic update method for parameters β 
and ρ. Adjusting ρ based on the original residual behavior 
improves convergence, whereas β is adjusted based on the it‐
eration of the dual residual. The optimal values for both pa‐
rameters are determined accordingly. Simultaneously, the re‐
sidual value of the current round is compared with that prior 
to the S th iteration. Herein, λ1 > 1 λ2 < 1, and λ3 > 1 are the 
parameter variation factors, and τ1 > 1, τ2 > 1, τ3 < 1, and 
τ4 > 1 are the comparison parameters.

ì

í

î

ïïïï

ïïïï

ρ(s + 1)= λ1 ρ
(s)     ε(s + 1)

P ³ τ1ε
(s - S)
P  ε(s + 1)

P ³ τ2ε
(s)
D

ρ(s + 1)= λ2 ρ
(s)     ε(s + 1)

P £ τ3ε
(s)
D  

ρ(s + 1)= ρ(s)         otherwise

(41)
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í
î

β(s + 1)= λ3 β
(s)    ε(s + 1)

D ³ τ4ε
(s - S)
D

β(s + 1)= β(s)        otherwise
(42)

VI. CASE STUDIES

In this paper, cases are solved using the Gurobi 9.5 solver 
in a Python 3.8 environment and executed on a computer 

with an Intel i7-12700 CPU and 16 GB RAM.

A. Tests on an IEEE 6-bus TS and Two UIESs

The test system is shown in Fig. 2. We construct the sys‐
tem using an IEEE 6-bus TS and two UIESs, where the ur‐
ban energy systems consist of a heat network with 6 nodes, 
a gas network with 7 nodes, and a distribution network with 
7 nodes. For each energy system, we select 5 intraday wind 
scenarios for optimization. The parameters of the TS, distri‐
bution network, heat network, natural gas network, equip‐
ment, wind forecast, and intraday scenarios of each ESO are 
presented in [29]. The gapD and gapP of the BADMM are 
both set to be 0.02 MW, and the convergence accuracy εccg 
of C&CG is 0.2 MW.

1) Comparison of Different Coordinating Models
To illustrate the advantages of coordination across energy 

systems and the tight integration of diverse energy sources, 
the following comparison models are constructed. ① Model 
1: each system is independently optimized. ② Model 2:  
electrical-heat coupling is ignored. ③ Model 3: interconnec‐
tion model proposed in this paper.

1) Comparison of Models 1-3
A comparison of Models 1-3 highlights the advantages of 

the interconnection between ESOs. Table II lists the operat‐
ing costs of different models in the day-ahead and intraday 
stages. 

Overall, the total dispatch cost follows the order Model 
3 < Model 2 < Model 1. Figure 3 and Table II show that 
Model 1 has significant wind curtailment in intraday scenari‐
os, indicating that Model 3 not only outperforms Model 1 in 
terms of cost control but also promotes wind consumption in 
different intraday scenarios. Note that “1-5” in Fig. 3 repre‐

sent the five intraday scenarios. The benefits of interconnect‐
ed dispatch are further illustrated when combined with day-
ahead dispatch results, as shown in Fig. 4. As Fig. 4(b) and 
(c) shows, the TS typically represents the net power output 
side in Models 2 and 3 due to surplus power. By contrast, 
Model 1, with isolated ESO dispatch, reduces the power out‐
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Fig. 2.　Test system.

TABLE II
COMPARISONS OF MODEL OPTIMIZATION RESULTS

Model

Model 1

Model 2

Model 3

TS cost ($)

Day-ahead

18612.9

24351.4

27387.7

Intraday

107.5

1316.5

1375.6

UIES1 cost ($)

Day-ahead

23534.6

20565.0

19018.6

Intraday

6302.2

4084.0

3363.5

UIES2 cost ($)

Day-ahead

31617.9

23345.9

21577.4

Intraday

12025.1

3937.1

3728.3

Total cost ($)

121136.9

82592.4

79389.8

Gas purchase 
(m3)

181030.6

184995.0

170723.2

Wind curtailment 
(MWh)

133.7

25.0

0

Power generation 
of generator (MWh)

3188.6

3983.2

4478.5
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put of generators in the TS and leads to wind curtailment.

In terms of energy consumption, UIES1 and UIES2 exhibit 
more severe load limitations due to the lack of TS support, 
as shown in Figs. 3 and 4. The full interconnection strategy 
can achieve day-ahead planned power allocation and account 
for unfavorable scenarios within the day.

In terms of privacy protection, the interconnection method 
of Model 3 enables direct transactions between UIESs with‐
out TS involvement, which is favorable for privacy protec‐
tion.

In Models 1-3, significant load limits occur during periods 
9-16 in Fig. 4. Because of the reduced wind power, genera‐
tor units operate close to full power but still cannot meet the 
load demand. In future systems with a high proportion of re‐
newable energy, orderly power consumption will become 
necessary during periods of wind power shortage.

2) Comparison of Models 2 and 3
A comparison of Models 2 and 3 emphasizes the effects 

of energy coupling on wind power consumption. In Model 
2, electricity and heat are not connected. Therefore, the heat 
load can only be provided by WHBs and GBs, and low-cost 
wind and thermal power conversion to heat cannot be uti‐
lized. Table II demonstrates that in Model 2, power genera‐
tion of the generators decreases and purchased natural gas in‐
creases, resulting in higher energy costs. In addition, Fig. 3 
reveals that due to the decoupling of electricity and heat, the 
system faces a heat load deficiency in each wind scenario 
within the day, and UIES experiences higher amount of 
wind curtailment. Thus, deep coupling between different en‐
ergy forms can enhance the conversion and improve overall 
energy utilization.
2) Decentralization Convergence Analysis

Three comparative models are established to verify the ef‐
fectiveness of Algorithm 2. ① Model 4: BADMM without 
acceleration strategy. ② Model 5: external BADMM with in‐
ternal C&CG. ③ Model 6: centralized method.

In this paper, the C&CG serves as the external frame‐
work, whereas the BADMM constitutes the internal imple‐
mentation mechanism.

1) Comparison of Models 3 and 4
The evolutions of UBsum and LBsum in C&CG of Models 3 

and 4 are illustrated in Figs. 5 and 6, respectively. After two 
C&CG iterations, both the models converge.

Figure 7 displays the maximum residual evolution in 
BADMM of MP of Models 3 and 4. In the first C&CG itera‐
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Fig. 3.　Intraday wind and load curtailments in Models 1-3.

T
o
ta

l 
co

st
 (

$
)

UBsum

LBsum

1 2 3

76400

76375

76425

76450

76475

Iteration

76455.8

76402.4

76451.2 76451.2

Fig. 6.　Evolution of UBsum and LBsum in C&CG of Model 4.

0 5 10 15 20 25

-100

-200

0

100

200

300

400

500

Time (hour)

(a)

P
o

w
er

 (
M

W
)

0 5 10 15 20 25

-100

-200

0

100

200

300

400

500

Time (hour)

(b)

P
o

w
er

 (
M

W
)

0 5 10 15 20 25

-100

-200

0

100

200

300

400

500

Time (hour)

(c)

P
o

w
er

 (
M

W
)

Wind curtailment; TS (wind)UIES2 (wind);

 TS (generator); UIES1 (load shed)UIES2 (GT);

UIES2 (load shed); TS (load shed); Load; EB

UIES1 (wind);

UIES1 (GT);

Fig. 4.　Power and load optimization results of Models 1-3. (a) Model 1. 
(b) Model 2. (c) Model 3.

1 2 3

76400

76375

76425

76450

76475

T
o
ta

l 
co

st
 (

$
)

Iteration

 UBsum

 LBsum

76455.9

76402.1

76451.1 76451.1

Fig. 5.　Evolution of UBsum and LBsum in C&CG of Model 3.

848



XU et al.: COORDINATED DISPATCH BASED ON DISTRIBUTED ROBUST OPTIMIZATION FOR INTERCONNECTED URBAN INTEGRATED...

tion, Model 3 under variable parameters shows a fluctuating 
maximum residual as compared with the non-accelerating 
strategy in Model 4. However, the overall trend converges 
with fewer iterations. The method in Model 3 avoids a slow 
decrease in the maximum residual and helps determine ρ 
and β for subsequent iterations.

In each C&CG iteration of Model 4, the initial parameter 
values of the BADMM remain the same. In the first two 
C&CG iterations of Model 4, the BADMM converges after 
278 and 220 iterations, respectively. Although more itera‐
tions are required, a higher accuracy is achieved. Notably, 
the solution time is not directly proportional to the total num‐
ber of C&CG iterations. As constraints and scenario proba‐
bility variables are added to the MP, the solution time for 
the next iteration of C&CG increases. The first C&CG itera‐
tion of Model 3 requires more time to obtain the optimiza‐
tion results and variables. By using the coupling variables, 
Lagrange multipliers, the penalty parameters from the first 
C&CG iteration as the initial conditions for the subsequent 
iteration, and the BADMM convergence iterations for the 
MP are significantly reduced. In the first two C&CG itera‐
tions of Model 3, the BADMM converges after only 87 and 
42 iterations, respectively.

Table III shows that the final convergence accuracy of the 
distributed algorithm is reliable. The solution result for Mod‐
el 6 is $76440.8 compared with that of the centralized opti‐
mization, and the errors for the optimization results of Mod‐
els 3 and 4 are minimal. Although Model 3 requires more 
computational time than Model 6, the significance of the dis‐
tributed optimization method utilized in this paper is main‐
tained because of its advantages of decentralization, data pri‐
vacy, security, and scalability.

2) Comparison of Models 3 and 5
As Fig. 8 and Table III show, Model 5 achieves a conver‐

gence precision of 0.1 MW after 83 iterations but still has a 
longer solution time as compared with that of Model 3. This 
is because the MP of each ESO is determined using the itera‐
tive C&CG algorithm, which implies that the solution time 

for each BADMM iteration is longer. Furthermore, during 
the BADMM coordination for solving each MP for ESO, the 
adverse probability sets of wind scenarios in different BAD‐
MM iterations might vary. Consequently, the constraints of 
each MP may undergo continuous adjustments, making it 
challenging to prove the convergence of Model 5.

3) Comparison of Uncertainty Models
The following models are established for comparison to il‐

lustrate the efficacy of the DRO method. Model 7 represents 
stochastic optimization (SO) algorithm and Model 8 repre‐
sents RO algorithm. SO adopts the same intraday scenarios 
as DRO with a fixed probability of 0.2 for each scenario 
possibility. RO employs the method described in [32], and 
the wind power boundary is consistent with the aforemen‐
tioned conditions.

Reference [29] shows that the primary difference in dis‐
patch costs lies in intraday adjustments, with the DRO costs 
falling between those of SO and conventional RO. DRO 
maintains a degree of conservatism, balancing economy and 
conservatism based on the wind power probability distribu‐
tion.

Figure 9 displays the relationship between total cost and 
parameters θ1 and θ∞. Under a fixed θ∞, the system dispatch 
cost increases as θ1 rises because the allowed probability de‐
viation range for intraday scenarios expands, generating 
worse intraday wind scenario probability distributions and 
rising costs. With a fixed θ1, the cost first exhibits a rising 
and then a flat pattern. This occurs because when θ1⩾θ∞, in‐
creasing θ¥ produces a worse probability distribution; where‐
as when θ1 < θ∞, the cost remains unchanged (as θ¥ cannot 
exceed θ1) with the maximum cost at θ1 = θ∞. The cost re‐
sults obtained from DRO are lower than those obtained from 
RO, further confirming that DRO is less conservative than 
RO.

TABLE III
COMPARISONS OF MODELS 3-5

Model

Model 3

Model 4

Model 5

Time (s)

174.9

752.2

467.4

The maximum residual (MW)

0.02

0.02

0.10

Total cost ($)

76451.1

76451.2

76458.9

Tolerance criteria;
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Fig. 7.　The maximum residual error in BADMM of MP of Models 3 and 
4. (a) Model 3. (b) Model 4.
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B. Scalability Test

To further demonstrate the effectiveness of Algorithm 2 in 
practical cases, a large-scale test is conducted using the 10 
UIESs, which are identical in configuration and are connect‐
ed to the IEEE 118-bus transmission network. The boundary 
buses are 18, 32, 34, 40, 55, 70, 74, 77, 92, and 112 of the 
TS, with each adjacent serial number of the UIESs intercon‐
nected. For the larger model, a relatively high convergence 
accuracy is set to balance the solution efficiency. The conver‐
gence residual in the BADMM is 0.05 MW and that of the 
C&CG algorithm is 0.2 MW. Figure 10 shows the evolution 
of UBsum and LBsum in C&CG, and Fig. 11 presents the evo‐
lution of total cost of BADMM in the first and second 
C&CG iterations.

The optimization results show that the problem converges 
after two C&CG iterations.

The BADMM of the MP converges after 98 and 32 itera‐
tions. Because of the lower convergence precision of the 
BADMM, the number of final convergence iterations is rela‐
tively low, and the final solution time is 943.2 s. As the 
model scale expands, each iteration in the BADMM takes 
longer time. However, the solution time for day-ahead large-
scale interconnected dispatch is acceptable. In this paper, 
each ESO’s interior is represented by a convex model, lead‐
ing to a rapid solution speed when solving each ESO model. 

Most of the solution time is spent on the convergence of the 
distributed algorithm. Therefore, the convergence accuracy 
of the BADMM should be set appropriately based on actual 
circumstances, allowing for some compromise in the conver‐
gence accuracy for large-scale systems.

VII. CONCLUSION

This paper presents a day-ahead coordinated optimization 
model based on DRO for a fully interconnected TS and 
UIESs. First, the traditional power transmission and distribu‐
tion interconnection is expanded to encompass the TS and 
UIESs using the BADMM (suitable for multi-block prob‐
lems), thereby ensuring the privacy of each ESO. Second, 
due to the increased uncertainty of wind power, determinis‐
tic dispatch strategies have proven unsatisfactory. According‐
ly, the developed DRO balances economy and conservative‐
ness. Finally, an accelerated external C&CG with internal 
BADMM is designed, offering theoretical convergence guar‐
antees and improved solution rates compared with existing 
distributed robust methods. Small-scale cases demonstrate 
the advantages of various energy coupling and interconnect‐
ed models for enhancing wind energy consumption and ad‐
dressing uncertainty. Large-scale cases reveal the applicabili‐
ty of the model to engineering applications. This paper focus‐
es on cost optimization across all ESOs and does not consid‐
er individual ESO benefit improvements from interconnec‐
tions. Future research could include cooperative game-based 
benefit improvements for each ESO in decision-making.
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