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Abstract——Taking the advantage of Internet of Things (IoT) 
enabled measurements, this paper formulates the event detec‐
tion problem as an information-plus-noise model, and detects 
events in power systems based on free probability theory (FPT). 
Using big data collected from phasor measurement units 
(PMUs), we construct the event detection matrix to reflect both 
spatial and temporal characteristics of power gird states. The 
event detection matrix is further described as an information 
matrix plus a noise matrix, and the essence of event detection is 
to extract event information from the event detection matrix. 
By associating the event detection problem with FPT, the empir‐
ical spectral distributions (ESDs) related moments of the sam‐
ple covariance matrix of the information matrix is computed, to 
distinguish events from “noises”, including normal fluctuations, 
background noises, and measurement errors. Based on central 
limit theory (CLT), the alarm threshold is computed using mea‐
surements collected in normal states. Additionally, with the aid 
of sliding window, this paper builds an event detection architec‐
ture to reflect power grid state and detect events online. Case 
studies with simulated data from Anhui, China, and real PMU 
data from Guangdong, China, verify the effectiveness of the 
proposed method. Compared with other data-driven methods, 
the proposed method is more sensitive and has better adaptabil‐
ity to the normal fluctuations, background noises, and measure‐
ment errors in real PMU cases. In addition, it does not require 
large number of training samples as needed in the training-test‐
ing paradigm.

Index Terms——Big data, event detection, empirical spectral 
distribution (ESD), free probability theory (FPT), information-
plus-noise model, Internet of Things (IoT), phasor measurement 
unit (PMU).

I. INTRODUCTION 

EVENT detection is critical to the reliable operation of 
power grids. However, with the increasing scale and the 

rapidly growing integrations of new energy and electrical ve‐
hicles [1], [2], the topology and operating mechanism of 

modern power grids become more and more complex [3], 
which makes the event detection in modern power grids 
more difficult.

Nowadays, with the fast development of Internet of 
Things (IoT) [4], [5], thousands of IoT devices such as pha‐
sor measurement units (PMUs) [6], supervisory control and 
data acquisition (SCADA) [7], and smart meters [3], are 
equipped in power systems, making it easy to reflect the 
power grid states based on big data. Events in power sys‐
tems, whether they are caused by attacks or failures, will be 
reflected in the relevant data changes. Therefore, it is of 
great significance to implement data-driven methods in IoT-
enabled measurements, to conduct online state monitoring 
and event detection in power systems [8], [9], and to dimin‐
ish or even avoid the severe consequences [10].

One typical data-driven method for event detection is the 
training-testing paradigm, which discovers abnormalities 
through two main steps: training the model using a training 
set and validating it using a testing set. For example, support 
vector machine (SVM) [11], [12], random forest [13], [14], 
and deep learning [15], [16] are used to classify the faults in 
power grids. In overall, the training-testing methods get fault 
mechanism by studying mapping functions between the in‐
put measurements and the event type. They are of high preci‐
sion and straightforward. However, these methods require 
large amount of data representing events, which are difficult 
to access because power grids operate normally most of the 
time. Besides, the performance of these methods heavily re‐
lies on the training set, and the poor generalization may fur‐
ther limit their applications in real cases [17], [18].

Another typical method is the statistical method, which 
identifies anomalies through statistical characteristics of data. 
Wherein, in addition to those rather simple indicators like 
mean, maximum, and minimum values [19], some other indi‐
cators including wavelet-based method [20] and Chebyshev-
based method [21] are developed to extract event features. 
Nevertheless, the above methods in essence analyze the data 
from different measurements independently, which have lim‐
ited abilities to reveal the correlations between data from dif‐
ferent devices. To deal with this problem, the principal com‐
ponent analysis (PCA) based methods in [22] and [23] con‐
struct the event detection matrix using measurements from 
various devices, and learn the warning threshold based on 
the measurements reflecting normal state. However, these 
methods assume the applied data to be linear and Gaussian 
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distributed, which is not always the case in real power sys‐
tems [23], [24]. In addition, the extraction of main compo‐
nents will inevitably result in the loss of original informa‐
tion, especially when the dimension of the event detection 
matrix is large, which is exactly the case within IoT, because 
the growing integration of IoT-enabled devices will increase 
the data volume [4].

Instead of focusing on a few main components that the 
largest eigenvalues corresponded to, the spectral distribution 
approaches detect events by analyzing the spectral distribu‐
tion of the big data matrix, where all the eigenvalues are 
considered and the loss of information can be avoided to 
some extent. For example, based on random matrix theory 
(RMT), [25] - [27] catch the fault signals by comparing the 
empirical spectral distributions (ESDs) with the standard lim‐
it spectral distributions (LSDs), where the mean spectral radi‐
us (MSR) from the complex plane is used as the event detec‐
tion indicator, and the difference between ESDs and LSDs is 
used to represent the fault degree. However, these methods 
describe the measurements as independently identically dis‐
tributed (IID.), and the alarm threshold (e.g., the inner circle 
of the circular law in RMT) is also based on the IID. as‐
sumption, which is too strict to meet in real power grids. In 
addition, the lack of consideration for normal fluctuations, 
background noises, etc. makes the MSR-based methods in‐
sensitive especially when the signal is weak.

To address the above problems, this paper takes full ad‐
vantage of IoT-enabled measurements, and proposes a spec‐
tral distribution analysis method to detect events online as 
well as catch event signals from the multivariate statistical 
view without dimension reduction. Firstly, using measure‐
ments from the PMU, which is one of the IoT-enabled devic‐
es, the event detection matrix reflecting spatio-temporal char‐
acteristics is constructed and formulated by an information-
plus-noise model. Wherein, the event signals are regarded as 
information matrix. Normal fluctuations, background noises, 
measurement errors and so on are regarded as noise matrix. 
The sum of the two is the measurement matrix. The essence 
of event detection is to extract event signal from the mea‐
surement matrix. Secondly, based on the spectral distribution 
relations among information matrix, noise matrix, and mea‐
surement matrix in information-plus-noise model provided 
by free probability theory (FPT), the ESD-related moments 
of the information matrix are taken to reflect the event sig‐
nals. With the aid of FPT, the strict Gaussian and IID. condi‐
tions can be relaxed. Thirdly, using measurements collected 
under normal states, this paper reveals the ESD information 
representing normal fluctuations, background noises, mea‐
surement errors and so on. With the calculation rules given 
by FPT, the event is detected based on hypothesis testing, 
where the central limit theorem (CLT) is used to determine 
the alarm threshold. In addition, the sliding window is used 
to conduct online event detection. The proposed method can 
determine whether there is an event or not. To further deter‐
mine the event type, it is necessary to further analyze the 
event using other methods.

The contributions of this paper are summarized as follows.

1) Based on the event detection matrix reflecting spatio-
temporal characteristics of the IoT-enabled measurements, 
the event detection problem is formulated as an information-
plus-noise model. Wherein, the event signal is taken as infor‐
mation. Normal fluctuations, background noises, and mea‐
surement errors are regarded as “noises”. The essence of 
event detection is to reveal event signal from the measure‐
ments including the “noises” mentioned above. The consider‐
ation of “noises” makes the event detection sensitive to 
weak signals.

2) By leveraging FPT and sliding window, the ESD-based 
moments of the event information matrix are calculated to 
tell events from the event detection matrix online. The pro‐
posed method converts the IoT-caused multivariate problem 
to a univariate problem, and extracts statistical signals with‐
out dimension reduction. What is more, the spectral distribu‐
tion method relaxes the strict conditions in the RMT-based 
method and is more adaptive to real IoT-enabled measure‐
ments.

3) The event detection is conducted based on hypothesis 
testing. The ESD-based moments of the noise matrix are cal‐
culated using normal state measurements, and the alarm 
threshold is calculated based on the CLT.

The rest of this paper is organized as follows. Section II 
discusses the basic principles of FPT and its application in 
information-plus-noise model. Section III formulates the 
event detection problem in power systems by information-
plus-noise model and proposes the event detection architec‐
ture based on FPT. Section IV verifies the FPT-based meth‐
od based on both simulated and real PMU data. Section V 
concludes this paper.

II. FPT AND ITS APPLICATION IN INFORMATION-PLUS-NOISE 
MODEL 

FPT is a tool for high-dimensional matrix analysis, which 
is mainly used in multiple-input multiple-output (MIMO) 
channel capacity estimation [28]. In the realm of IoT, the da‐
ta from various devices and diverse locations result in high-
dimensional big data within power systems. Consequently, it 
is feasible to extract event signals using FPT for such data 
configurations. This section introduces the concepts of ESD 
and FPT and presents the applications of FPT in information-
plus-noise model.

A. ESD of Matrices

As shown in (1), for a measurement matrix M with p mea‐
surement variables and n sampling points, the ESD of its 
sample covariance matrix A reflects the distribution charac‐
teristics of the eigenvalues of A [27], [29].

μA (x)=
1
p∑i = 1

p

I ( λi(A) £ x) (1)

where μA (x) is the ESD of A; x is the independent variable 
of the ESD function; I ( )×  is the indicator function; and λi(A) 
is the ith eigenvalue of A. 

In addition, the sample covariance matrix of the measure‐
ment matrix M is computed by (2).
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A =
1
n

M͂M͂ H (2)

where H represents the transpose of a matrix; and M͂ is the 
normalization of M, which is computed by:

M͂ i = (M i - μ (M i ) ) /σ (M i ) (3)

where M i is the ith row of M; 
~
(×) is the symbol of normaliza‐

tion of M i; and μ (M i ) and σ (M i ) are the mean and variance 

of M i, respectively.

B. Basic Rules of FPT

In traditional mathematical theory, it is difficult to get the 
ESD of the sum or multiplication of two matrices from the 
ESDs of two individual matrices (except for the case when 
they are commutative) and vice versa. However, the FPT in‐
troduces the concept of “asymptotic freeness” [30]-[32], 
which is adaptive to non-commutative random variables like 
matrices. Based on FPT, one can get the ESD of the sum or 
multiplication of the two matrices when they are asymptotic 
free.

Given two matrices C1ÎCp ´ p and C2ÎCp ´ p, the ESDs of 
them are μC1

 and μC2
, respectively, and the ESD of C1 +C2 is 

μC1 +C2
. If both C1 and C2 are asymptotic free, we have:

μC1 +C2
= μC1

 μC2
(4)

where  represents the additive free convolution. Equation 
(4) indicates that the ESD of the sum of two matrices equals 
to additive free convolution of the ESDs of the two matrices.

Let the ESD of multiplication of C1 and C2 be μC1 ´C2
, then 

μC1 ´C2
 can be computed based on μC1

 and μC2
.

μC1 ´C2
= μC1

⊗ μC2
(5)

where ⊗ represents the multiplicative free convolution. 
Equation (5) indicates that the ESD of multiplication of two 
asymptotic free matrices equals to the multiplicative free 
convolution of the ESDs of two respective matrices.

In addition, based on additive free deconvolution ⊖ and 
multiplicative free deconvolution ⊘, we have (6) and (7), re‐
spectively.

μC1
= μC1 +C2

⊖ μC2
(6)

μC1
= μC1 ´C2

⊘ μC2
(7)

C. Application of FPT in Information-plus-noise Model

As shown in (8), the standard information-plus-noise mod‐
el consists of three parts: ① the measurement matrix Y; ② 
the information matrix X; and ③ the noise matrix S.

Y =X + S (8)

The sample covariance matrix of each part in (8) is denot‐

ed as Wn =
1
n

Y͂Y͂ H, Rn =
1
n

X͂X͂ H, and Γn =
1
n

S͂S͂H, respective‐

ly; and the ESDs of Wn, Rn, and Γn are denoted as μW, μR, 
and μΓ, respectively.

Based on the FPT rules mentioned above, [31] reveals the 
ESD relation between the elements in the information-plus-
noise model, as shown in:

μW⊘ μc = ( μR⊘ μc )  μΓ (9)

where μc is the ESD of Wishart matrix [27], [33]. The densi‐
ty of μc ( )dμc /dx  is described as Marchenko-Pastur law (M-P 

law), based on which μc can be determined once the dimen‐
sions of the matrices in the information-plus-noise model are 
determined.

Then, we have (10), from which one can get event infor‐
mation μR from the measurement matrix and the noise ma‐
trix.

μR = (( μW⊘ μc ) ⊖ μΓ ) ⊗ μc (10)

D. Computation of ESD-based Moments of Information Ma‐
trix Based on FPT

The ESD of a matrix can be uniquely expressed by its mo‐
ments, so one can compute the moments of μR to get signal 
about the information matrix. As shown in (11), the “mo‐
ment-cumulant formula” describes the relation between the 
moments and cumulants of an ESD μ, based on which the 
computation of the moments of μR can be calculated.

mμ
k =∑

i £ k

αμi × coefk - i((1 +mμ
1 z +mμ

2 z2 +) i ) (11)

where coefi( )×  is the coefficient of zi; mμ
k is the k th moment 

of μ; and αμi  is the ith cumulant of μ. 
Based on the iterative operation, one can compute the first 

k cumulants from the first k moments, and vice versa [31].

coefk - i((1 +mμ
1 z +mμ

2 z2 +) i ) =Mi (k - i) (12)

M i (i = 12k) is computed as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

M1 =m

M2 =m ⋆m


Mk =⋆ km

(13)

m = [ ]1    mμ
1    m

μ
2        mμ

k (14)

where ⋆ k represents the k-fold convolution; and m is a vec‐
tor composed by the first k moments of μ.

The expression of μR in (10) includes a multiplicative free 
deconvolution between μW and μc, an additive free deconvo‐
lution between μW⊘ μc and μΓ, and a multiplicative free con‐
volution between ( μW⊘ μc ) ⊖ μΓ and μc. As depicted in 

(15) and (16), the cumulants of addictive free (de)convolu‐
tion between μA and μB can be computed based on the addi‐
tion or subtraction between cumulants as:

αμA μB

k = αμA

k + αμB

k (15)

αμA⊖ μB

k = αμA

k - αμB

k (16)

Also, the moments of multiplicative free (de)convolution 
of μ and μc can be computed based on their moments:

cmμ
k =∑

i £ k

cmμ⊘ μc

i × coefk - i((1 + cmμ
1 z + cmμ

2 z2 +) i ) (17)

cmμ⊗ μc

k =∑
i £ k

cmμ
i × coefk - i((1 + cmμ

1 z + cmμ
2 z2 +) i ) (18)
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where c is the ratio of rows to columns of the matrices in 
the information-plus-noise model.

Based on (11) and (15) - (18), the moments of μR can be 
computed from Algorithm 1. Algorithm 1 depicts the calcula‐
tion details of moments of μR, where moment(×) denotes the 
calculation of moments through cumulant; and cumulant(×) 
denotes the computation of cumulants through moments. The 
higher-order moment provides a better fit to the ESD, but it 
also demands a more extensive computational effort. Consid‐
ering the tradeoff between computation cost and accuracy, 
this paper takes the third moment of the ESD of μR as the 
event detection indicator.

III. EVENT DETECTION ARCHITECTURE BASED ON FPT 

In this section, the event detection matrix is firstly con‐
structed using the PMU measurements. Secondly, the event 
detection problem is formulated as an information-plus-noise 
model. Thirdly, the alarm threshold is calculated based on 
the CLT considering normal fluctuations, background noises, 
and measurement errors. Lastly, the online event detection is 
proposed by combining FPT with sliding window.

A. PMU Big Data and Event Detection Matrix

PMU [6], [34], [35] is one of the typical IoT-enabled de‐

vices. PMUs generate data streams with accurate time 
stamps and high resolutions. In this paper, by leveraging IoT-
enabled measurements from PMUs, the event detection ma‐
trix Y with the size of p ´ n is constructed to reflect both spa‐
tial and temporal characteristics. As shown in (19), there are 
p PMUs at different locations (spatial characteristics), and n 
denotes the length of the time series (temporal characteris‐
tics). Besides, the elements in each column have the same 
time stamp.

Y =

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úy11 y12  y1n

y21 y22  y2n

  
yp1 yp2  ypn

(19)

The ratio of rows to columns is c (c = p/n). The elements 
in Y can be nodal voltage, branch current, active power and 
so on [19], [26], [27], depending on the type of the event 
that needs to be detected. For example, the events associated 
with active power disturbances primarily lead to transient in 
frequency and voltage magnitude, thus this kind of events 
can be detected using event detection matrix constructed by 
active power, and frequency or voltage magnitude. However, 
those related to reactive power affect the voltage magnitude 
(locally) only [19]. In this situation, instead of using frequen‐
cy and active power, the voltage magnitude should be taken 
as the elements of event detection matrix.

B. Information-plus-noise Model of Event Detection Problem

The event detection matrix constructed in (19) reflects 
power grid state and contains event signals [25] - [27], [29], 
so it is feasible to conduct event detection based on it. How‐
ever, the matrix in (19) is actually a measurement matrix, 
which means that in addition to the event signals, normal 
fluctuations, background noises, and measurement errors are 
also included. These factors always exist and can be regard‐
ed as “noises”, because they are mixed with event signals 
and can deteriorate the detection results or even totally cover 
the event signals, especially when the event signals are 
weak. However, the previous research work doesn’ t consider 
the “noises” and monitor the power grid state by directly ex‐
tracting event signals from Y [25]-[27], [29], so it is neces‐
sary to reconsider the event detection based on PMU mea‐
surement data, and detect events after eliminating the effects 
of the “noises” mentioned above.

As shown in (8), the event detection matrix in (19) can be 
described as an information-plus-noise model, which con‐
sists of two parts.

1) The information matrix X, which indicates whether an 
event occurs or not, and the severity of the event, etc. For in‐
stance, [27] abstracts the event as an step signal, and the 
magnitude of the step signal is used to describe the event se‐
verity.

2) The noise matrix S, which contains the normal fluctua‐
tions, measurement errors, background noises, etc.

From the discussions above, we can conclude that the es‐
sence of event detection in power grids is to extract signals 
of X from the measurement matrix Y, which is exactly what 

Algorithm 1: calculation of moments of μR

Input: the measurement matrix M and the first three moments of the 
noise matrix calculated from Algorithm 2 (mμΓ

k )
Step 1: compute moments of v = μW⊘ μc by (17)

1) {γk} = cumulant ({cmμW

k }) k = 123

2) {mv
k} = {γk /c}k = 123

Step 2: compute moments of ρ = v⊖ μΓ by (11) and (16)

1) {αv
k} = cumulant ({mv

k}) k = 123

2) {αμΓk } = cumulant ({mμΓ
k }) k = 123

3) {αρk} = {αv
k - α

μΓ
k }k = 123

4) {mρ
k} =moment ( ){ }αρk k = 123

Step 3: compute moments of ρ⊗ μc by (18)

1) {αμR

k } =moment ({cmρ
k}) k = 123

2) {mμR

k } = {αμR

k /c}k = 123
Output: the first three moments of information matrix (mμR

k )

Algorithm 2: calculation of moments of noise matrix and alarm threshold

Step 1: compute moments of noise matrix mμΓ
k

1) For each sampling moment t, calculate the k th moment of the noise ma‐
trix mμΓ

kt
 formed by the historical data collected under normal states, 

where mμΓ
kt

 is the k th moment of mμΓ
k  calculated at moment t

2) Calculate the mean of the k th moment of the noise matrix mμΓ
k =

mean(mμΓ
kt

)

Step 2: compute alarm threshold mμ0
R

3

1) At each sampling moment t, calculate the moments of the event matrix 
mμR

kt
 using Algorithm 1, where the measurement matrix is constructed 

using the historical measurements from t - n + 1 to t, and the moments 
of the noise matrix mμΓ

k  are from Step 1. Repeat this step until all the 
moments are considered

2) Calculate the mean and standard deviation of the third moment of the 
event matrix, depicted as mean(mμR

3t
) and dev(mμR

3t
), respectively

3) Based on α = 0.05, the alarm threshold in standard Gaussian distribution 
is 1.65, so the alarm threshold is calculated according to mμ0

R

3 = 1.65 ×
dev(mμR

3t
)+mean(mμR

3t
)
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this paper uses FPT to do. The logic is as follows. As dis‐
cussed in Section III, ESD is a common tool to reflect prop‐
erties of a specific matrix. Based on the ESD of the measure‐
ment matrix, studies have been done to reflect power grid 
states [25], [26], detect faults [27], [29], and so on. Thus, 
ESD can also be used to reflect event signals from X. FPT 
reflects the ESD-based relation between the elements in in‐
formation-plus-noise model, based on which ESD of the in‐
formation matrix X can be extracted from the ESDs of mea‐
surement matrix and noise matrix using (10). Furthermore, 
the ESD-based moments can uniquely describe a specific ma‐
trix, and Algorithm 1 describes the computation of ESD-
based moments of information matrix based on FPT, so this 
paper takes the ESD-based moments as the event indicators, 
and detects events using Algorithm 1.

C. Alarm Threshold Considering “Noises” in Power Systems

Algorithm 1 describes the method to get ESD-based mo‐
ments of the information matrix from those of the measure‐
ment matrix and noise matrix, where the moments and cumu‐
lants of μW and μΓ are needed. The moments and cumulants 
of μW are easy to calculate based on the PMU measure‐
ments. However, there is no direct way to get the moments 
and cumulants of μΓ, which represent the information of the 
noise matrix. As mentioned in Section III-B, the noise ma‐
trix includes normal fluctuations, measurement errors, back‐
ground noises, and so on. The measurements collected in 
normal operation states contain all the information above. 
Thus, this paper uses the measurements in normal operation 
states to calculate moments and cumulants of μΓ.

The alarming threshold can be decided based on the mo‐
ments of μΓ using CLT, and events are detected based on hy‐
pothesis testing. When the power grid is in normal operation 
state, the measurements matrix will only contain the “nois‐
es” mentioned above, which means that the measurement 
matrix and the noise matrix have the same distributions. Be‐
cause of the subtraction process mentioned in Algorithm 1, 
the moments μR will be really small and follow the Gaussian 
distribution according to CLT. When there is an event, the in‐
formation matrix will contain event signals, and the differ‐
ence between μW and μΓ will make the moments of μR rela‐
tively large and will follow the Gaussian distribution with 
very low probability. Consequently, this paper accomplishes 
event detection by assessing the probability of the moments 
of μR adhering to the Gaussian distribution, using hypothesis 
testing theory, which is depicted in (20).

ì
í
î

ïï
ïï

H0: m
μR

k <mμ0
R

k

H1: m
μR

k ³mμ0
R

k

(20)

where mμ0
R

k  denotes the alarm threshold; H0 denotes the null 
hypothesis corresponding to the normal operation states, 
where mμR

k <mμ0
R

k ; and H1 corresponds to the situation where 

mμR

k ³mμ0
R

k  and null hypothesis is rejected, which means that 
there is an event. In hypothesis testing theory, the signifi‐
cance level α determines whether your sample evidence is 
strong enough to suggest that an effect exists in the entire 

population of the null hypothesis H0. In this paper, α is set 
to be 0.05, and from the normalized Gaussian distribution, 
we can see that if the normalized event indicator is more 
than 1.65, we have less than 5% probability that the power 
grid operates in normal operation state, so the null hypothe‐
sis is rejected and H1 is accepted, that is, there is an event. 
Details of calculations of moments of noise matrix (mμΓ

k ) and 

alarm threshold (mμ0
R

3 ) are shown in Algorithm 2. In this pa‐
per, considering the trade-off among sensitivity, robustness, 
and the computation, we have k = 123, and the third mo‐
ment of the information matrix is used to detect the event. 
Details of order of moment and cumulant selections are 
shown in Section IV-D.

D. Real-time Event Detection Architecture Based on Sliding 
Window

To conduct real-time event detection, the sliding window 
is used to observe the power grid state. As shown in (19), 
the length of the window is n. In each window, there are n-1 
columns of historical samples and 1 column of current sam‐
ples. As time goes on, we have 1 column of historical data 
moving out and 1 column of new data moving in at each 
sampling moment.

Based on sliding window, the overall framework of event 
detection based on FTP using IOT-enabled measurements is 
depicted in Fig. 1, which mainly includes three steps.

Step 1: using the historical measurements, construct the 
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Fig. 1.　Event detection based on FPT using IoT-enabled measurements.
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noise matrix S, calculate the first three moments of Γ(mμΓ
k ), 

and calculate the alarm threshold (mμ0
R

3 ) using Algorithm 2.
Step 2: using the PMU measurements collected at current 

time and the historical measurements, construct the event de‐
tection matrix Y, and calculate the first three moments of W 
(depicted as mμW

k ).
Step 3: taking mμW

k  and mμΓ
k  as inputs, compute mμR

k  using 
“moment-cumulant formula” in Algorithm 1, and monitor 
the power grid state based on the alarm threshold. When the 
measurements of PMUs are updated, repeat Step 2 and 
Step 3.

IV. CASE STUDIES 

Based on MATLAB R2016b, the FPT-based event detec‐
tion method is validated in three cases: ① its effectiveness 
towards simulated data; ② its effectiveness towards real 
PMU data; and ③ its advantages over other data-driven 
methods. At the end of this section, the way to decide orders 
of moments and cumulants of the event detection indicator 
is introduced.

A. Case 1: Case Study with Simulated Data

In this subsection, a 500 kV power grid covering 26 prov‐
inces is built based on power system analysis software pack‐
age (PSASP), according to the real power grid topology of 
China. To focus on the operation state of Anhui Province, da‐
ta streams from 40 PMUs are collected and analyzed. The 
40 PMUs are deployed at 40 buses in Anhui, China. The 
sampling rate is 100 Hz, and the simulation duration is 5 s, 
so we have 500 sampling points in total. During the simula‐
tion, the load at bus 15 experiences an step increase of 50 
MW at 1.01 s, and stays at 50 MW during the following 399 
sampling points. Event settings for case 1 are depicted in Ta‐
ble I. In this case, both voltage magnitude and frequency at 
each bus are collected to construct the event detection ma‐
trix and verify the adaptability of the proposed method to 
different kinds of PMU data in power systems. In addition, 
the parameter c in (19) is set to be 0.8, so the width of the 
window is 50, and the indicators in Fig. 2(b) and Fig. 3(b) 
have their values from the 50th sampling moment. The test 
results based on voltage magnitude and frequency will be an‐
alyzed, respectively.

1)　Event Detection Based on Voltage Magnitude Measure‐
ments

Figure 2 depicts the event detection based on voltage mag‐
nitude measurements. Based on the voltage measurements 
collected under normal operation state, the first three mo‐

ments of sample covariance matrix of noise matrix in (8) 
and the alarm threshold are calculated. Then, the FPT-based 
indicator is used to monitor the operation state during the 
whole simulation. From Fig. 2, the following two conclu‐
sions can be obtained.

1) The FPT-based indicator can catch the starting point of 
the event based on voltage magnitude measurements. The 
alarm threshold is 4.25. As shown in Fig.2(b), the indicator 
hits 4.28 when t = 1.02 s, which is exactly the next sampling 
moment after the event. It indicates the ability of the indica‐
tor to sensitively catch the event signal. In addition, the indi‐
cator keeps alarming during t = 1.02 - 2.20 s, which corre‐
sponds to the drastic changing trend during that period in 
Fig.2(a).The 1.18 s duration alarm will make the event detec‐
tion result more credible.

2) The FPT indicator based on voltage magnitude mea‐
surements can reflect power grid state in almost real time. 
During t = 0 - 1 s, the third moment stays steady at nearly 0 
(as shown in the zoomed part in Fig. 2(b)), which correctly 
reflects the stable state of the power grid during that period. 
During t = 1.02 - 5.00 s, there are three peaks in total. The 
first peak reflects the voltage drop during t = 1.02 - 1.54 s, 
which is caused by the step increase of the load at t = 1.01 s. 
The second peak corresponds to the voltage recovery during 
t = 1.55 - 2.14 s. The third peak reflects the gentle decrease of 
the voltage magnitude during t = 2.65 - 3.14 s. What is more, 
the indicator shows a stable trend when t = 2.15 - 2.64 s, 

TABLE I
EVENT SETTINGS FOR CASE 1

Bus No.

15

Others

Sampling time

t = 0 - 1.01 s

t = 1.01 s

t = 1.01 - 5 s

t = 0 - 5 s

Event

Unchanged

DP = 0® 50 MW (linearly increase)

The same as that when t = 1.01 s

Unchanged
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Fig. 2.　 Event detection based on voltage magnitude measurements. (a) 
Voltage magnitude. (b) Event detection results.
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which corresponds to the relatively steady trend of the volt‐
age magnitude during that period. After t = 3.15 s, the indica‐
tor returns to nearly 0, which correctly reflects the stable 
state of the voltage magnitude, because the voltage magni‐
tude reverts to a state similar to the condition prior to the oc‐
currence of the event.
2)　Event Detection Based on Frequency Measurements

Figure 3 depicts the event detection results based on fre‐
quency measurements. Similar to the voltage magnitude mea‐
surements, the first three moments of the sample covariance 
matrix of the noise matrix and the alarm threshold are calcu‐
lated based on the measurements collected under normal op‐
eration state. From Fig. 3, two conclusions can be obtained.

1) The FPT-based indictor can catch the event signal 
based on frequency measurements. The alarm threshold is 
4.25 in this case. As shown in Fig. 3(b), the indicator hits 
1208 when t = 1.02 s, which is exactly the nearest sampling 
point after the event occurs. In addition, the indicator keeps 
alarming since t = 1.02 s, which correctly reflects the event 
during t = 1.01 - 5.00 s.

2) The FPT indicator based on frequency measurements 
can reflect power grid state in almost real time. During 
t=0-1 s, the indicator stays steady, which reflects the stable 
state of the frequency during that period. Then, during t =
1.02 - 5.00 s, the third moment calculated fluctuates severely 
and keeps alarming, which correctly reflects the frequency 
decreasing trend during that period. To be specific, when t =
1.02 s, this indicator surges to about 1200, which corre‐
sponds to the slump of the frequency at that moment. Be‐
sides, the two peaks during t = 1.95 - 2.06 s and t = 2.06 -

4.00 s, respectively, reflect the increasing and decreasing 
trends. When t = 4.00 - 4.45 s, the third moment of ESD 
shows a relatively steady trend and stays nearly 50, which 
corresponds to the relatively stable trend of the frequency 
during that period. After t = 4.45 s, the increasing trend of 
the indicator reflects the decreasing trend of the frequency.
3)　More Discussions About Simulated Data Case

From the event detection results based on voltage magni‐
tude and frequency, more conclusions can be summarized as 
follows.

1) The proposed method is valid for all the data character‐
izing power grid state, as long as they have corresponding 
changes when the event occurs. For example, in this subsec‐
tion, both voltage magnitude and frequency can catch the 
event and reflect the power grid state. The main reason is 
that, the event causes the changes of both voltage and fre‐
quency measurements, and the indicators catch the event sig‐
nal based on the changes of the two types of data.

2) The type of data used to build the indicator to monitor 
the power grid state can be determined by the type of the 
event and the sensitivity expected. For the same event, the 
indicators can react differently because of different changing 
degrees and trends of the corresponding type of data used. 
To be specific, in case 1, the frequency-based indicator hits 
up to 1208 at t = 1.02 s, while the voltage magnitude based 
indicator reaches up to 548 until t = 1.03 s. In addition, the 
frequency-based indicator alarms during t = 1.02 - 5.00 s, 
while the voltage magnitude based indicator alarms from 
1.02 s to 2.06 s. Also, the accuracies of the two measure‐
ments are 100% and 41%, respectively. To conclude, for the 
active power step increase event, both frequency measure‐
ments and voltage magnitudes are effective in detecting the 
events. However, the frequency measurements are better in 
this case. For other events related to reactive power, only 
voltage magnitude will be affected and should be used to 
monitor the power grid state.

B. Case 2: Case Study with Real PMU Data

In this subsection, the current measurements of a 10 kV 
distribution network with 11 lines in Guangdong, China, are 
provided to validate the effectiveness of the proposed meth‐
od. For each line, there is a PMU monitoring each phase, so 
we have 33 PMUs in total. According to c = 0.8 (the same as 
case 1), the width of the sliding window is set to be 41. The 
sampling frequency is 100 Hz, and 500 sampling points in‐
cluding the event occurring moment are selected for testing. 
To be specific, a single-phase grounding fault occurs at the 
101st moment and continues for the following 399 sampling 
points. Details of the current measurements collected are 
shown in Fig. 4(a). Based on current measurements collected 
in normal operation state, the alarm threshold is computed to 
be 93.3. Then, based on the event detection architecture in 
Fig. 1, the power grid state is monitored and the results are 
depicted in Fig. 4(b), from which the following two conclu‐
sions can be obtained.

1) The proposed method can detect the real-world event. 
The single-phase grounding fault occurs at the 101st moment. 
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The ideal performance is to detect the event at the nearest 
moment after the event occurs (i. e., the 102nd moment). As 
shown in Fig. 4(b), the event indicator reaches the alarm 
threshold at the 107th sampling point, delayed by only 0.05 s. 
In addition, the indicator keeps alarming until the 150th mo‐
ment, which correctly reflects the increasing and decreasing 
trends during this period.

2) The proposed method can reflect the real-world power 
grid state. Although the indicator does not necessarily hit the 
alarm threshold because of the severity of the event, the 
changing trend of the measurements and the power grid state 
can be obtained. For example, from the 41st moment to the 
106th moment, although the indictor keeps below the alarm 
threshold, the first peak during t = 0.65 - 1.02 s correctly re‐
flects the first current increase shown in Fig. 4(a). The in‐
creasing trend during t = 1.02 - 1.07 s reflects the event from 
t = 1.01 s. In addition, between the 151st and the 359th mo‐
ments, the indicator steadily runs at about -51, which is cor‐
responding to the relatively steady trend of the current mea‐
surements during that period. After that, the overall down‐
ward and upward trends in Fig. 4(a) are reflected by the two 
peaks at the 360th and 452nd moments in Fig. 4(b), respective‐
ly. Compared with the peak at the 106th moment, these two 
peaks are not that severe and do not trigger the alarm, be‐
cause the current changes are not strong enough.

C. Comparisons with Other Data-driven Methods

To verify the superiority of the FPT-based method over 
other data-driven methods, this subsection compares the FPT-

based method with the statistical MSR-based method in [26] 
and the training-testing CNN-based method in [16]. The 
MSR-based method maps the eigenvalues of the covariance 
matrix of (19) to the complex plane and detects the event by 
comparing the mean value of the eigenvalues with the limit 
value under IID. condition. The CNN-based method con‐
structs the feature extraction network and maps the measure‐
ments to the event type. In this paper, the CNN-based meth‐
od is used to do a binary classification problem, where nor‐
mal and abnormal operation states are the two classes need 
to be distinguished. The comparisons include the adaptability 
to the simulated data, the adaptability to the real PMU data, 
and the sensitivity under different signal-to-noise ratios 
(SNRs).
1)　Comparisons Based on Simulated Data

In this part, the measurements from different events are 
used for comparisons of the FPT-based method with the 
MSR-based method and the CNN-based method. As shown 
in Fig. 5, the performances of MSR-based and CNN-based 
methods are shown based on frequency measurements from 
the event in case 1.

Figure 5(a) depicts the performance of the MSR-based 
method. For this method, the same sliding window width is 
set as in FPT-based method. It finds that the MSR-based 
method can also effectively detect the event and reflect the 
power grid state. According to [26], the alarm threshold of 
this method is 0.469. The MSR indicator drops below the 
threshold at the 102nd sampling point, which is exactly the 
next sampling point the event occurs. In addition, MSR runs 
steadily above the threshold during 0.5-1.01 s, which corre‐
sponds to the steady stage of the power grid during that peri‐
od. Then, MSR keeps below the threshold during 1.02-5 s, 
which correctly reflects the event during that period. To con‐
clude, the MSR-based method shows a comparable perfor‐
mance as the FPT-based method for the simulated data.
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Figure 5(b) depicts the performance of the CNN-based 
method, where 0 represents the normal operation state and 1 
denotes the abnormal operation state with event. For this 
method, the parameter τ in (7) in [16] is set to be 5, the size 
of images is 20×20, and ROCOF_net in [16] is the network 
used to predict the power grid state. The training set is col‐
lected by setting other load changing events and collecting 
the frequency measurements, and the testing set is collected 
by the frequency measurements from case 1. To evaluate the 
power grid state from the first sampling point of the testing 
set, this paper concatenates another 403 sampling points col‐
lected in normal operation state before the testing set. As 
shown in Fig. 5(b), for the first 101 sampling points, the 
power grid is depicted as normal in most sampling points, 
and only 1 point is wrongly classified as abnormal. When 
the fault is set during 1.01-5.00 s, all the samples are rightly 
described as abnormal states with events. To conclude, the 
CNN-based method can effectively detect the event in this 
case.

From the above results shown in Figs. 3, 5, and 6, we can 
see that the three methods perform equally well in case 1, 
because all of them detect the event at the 102nd sampling 
point and keep alarming for the whole event occurring peri‐
od.

To further compare the three methods, this paper set other 
three events, as shown in Table II, to test the performances 
of the three methods. In this part, the following two indica‐
tors are used to evaluate the performances of the event detec‐
tion methods considered.

1) Delayed moment (DM): DM represents the number of 
sampling points during the delayed time between the detec‐
tion of an event and the occurence of that event. DM de‐
scribes the sensitivity of the event detection method. The 
smaller this indicator is, the more sensitive the event detec‐
tion method is.

2) Accuracy ratio (AR): AR denotes the ratio that the 
method correctly describes the power grid state. The larger 
the indicator is, the better the method is at detecting events.

Based on the above two indicators, Table II shown the per‐
formances of the three methods for different events and mea‐
surements. From Table II, the FPT-based method performs 
best in DM for all the events. As for AR, it shows worse per‐
formance than the CNN-based method in the first event in 
Table II, which is caused by the stable state of the voltage 
measurements after t = 3.15 s, as shown in Fig. 2(a). In the 
single-phase grounding fault, the FPT-based method achieves 
50.30% in AR, which is slightly lower than 50.74% of the 
CNN-based method. This inferiority is really slight and can 
be caused by statistical errors, so we can say that the two 
methods have comparable performance in this event when it 
comes to the AR. In addition, the FPT-based method has 
much lower DM than the CNN-based method in this event 
(11 v. s. 83), which means that the FPT-based method is 
much more sensitive than the CNN-based method. Overall, 
the FPT-based method is the most sensitive and accurate 
method compared with the MSR-based and CNN-based 
methods.
2)　Comparisons Based on Real PMU Data

This paper also compares the adaptability of the above 
methods towards the real PMU data mentioned in case 2. As 
shown in Fig. 6 and Fig. 4(b), the conclusions are as follows.

1) The MSR-based method is effective in reflecting the 
operation trend of the power grid, but has limited sensitivity 
in detecting events. As shown in Fig. 6(a), the MSR indica‐
tor shows similar changing trend as the FPT-based method. 
For example, MSR shows downward trends from t = 1.01 s, 
t = 3.58 s, and t = 4.50 s, which corresponds to the upward 
trends of the FPT-based method when t = 1.02 s, t = 3.60 s, 
and t = 4.52 s, respectively, in Fig. 4(b). However, MSR trig‐
gers the threshold only when t = 1.13 s and t = 1.52 s, which 
means that MSR has limited sensitivity. We may need to fur‐
ther lower the threshold for MSR to make it adaptable to the 
real PMU data.

TABLE II
PERFORMANCE COMPARISONS OF DIFFERENT DATA-DRIVEN METHODS

Event

Load changing in 
case 1

Single-phase 
grounding fault

One generator is 
cut

One transformer is 
cut

Measurement

Voltage

Current

Frequency

Voltage

Method

FPT-based

MSR-based

CNN-based

FPT-based

MSR-based

CNN-based

FPT-based

MSR-based

CNN-based

FPT-based

MSR-based

CNN-based

Performance

DM

0

16

70

11

32

83

0

0

0

0

0

0

AR (%)

56.40

24.20

67.00

50.30

33.10
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Fig. 6.　 Comparison of different methods based on real PMU data. (a) 
MSR-based method. (b) CNN-based method.
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2) For the CNN-based method, its effectiveness towards 
the real-world cases is limited. To collect the training set, a 
distribution network model is built according to the real 
PMU distribution network in case 2, and other single-phase 
grounding faults are set to collect the current measurements. 
Then, the CNN-based method is tested using the real PMU 
data from case 2. From Fig. 6(b), we can find that the CNN-
based method fails to detect the event, because it classifies 
almost all the sampling points as abnormal operation states. 
The reason is that the method in [16] constructs the images 
based on the differences between measurements. However, 
the real-world measurements are always with relatively se‐
vere fluctuations, thus the differences between the measure‐
ments are relatively large and the CNN-based method mis‐
takenly classifies the large differences as abnormal operation 
states. What needs to be mentioned is that, during the train‐
ing stage, some other real-world current measurements are 
also used to train the CNN-based method. However, because 
of the small number of the real-word training samples, the 
CNN-based method still performs poorly and shows poor 
generalization performance. From this case, we can conclude 
that the FPT-based method has better adaptability over the 
CNN-based method for the real-world PMU data.
3)　Comparisons Under Different SNRs

The frequency measurements in case 1 are used to com‐
pare the sensitivity of the three methods under different 
SNRs. The event detection matrix is constructed by Y =Y +
mE, where m is the index of SNR; and E is the noise matrix 
meeting E N (01). This paper sets m to be 0.0005 and 
0.0010, respectively, to mimic the increased noise and the 
decreased SNR. The performances of the three methods are 
shown in Figs. 7-9, respectively. The comparisons between 
the three methods are shown in Table III, from which we 
can conclude that although the abilities of the three methods 
to detect anomalies deteriorate with the decrease of SNR, 
the FPT-based method has the best sensitivity. More details 
are as follows.
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TABLE III
COMPARISONS OF DIFFERENT DATA-DRIVEN METHODS UNDER 

DIFFERENT SNRS

SNR

0.0005

0.0010

Method

FPT-based

MSR-based

CNN-based

FPT-based

MSR-based

CNN-based

Performance

DM

2

81
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74

AR (%)

29.4

66.6

24.4

22.4
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1) The MSR-based method is the least sensitive among 
the three methods. As shown in Fig. 7, the indicator calculat‐
ed from this method stays above the threshold under two 
SNRs, which means that the MSR-based method is not sensi‐
tive enough to trigger the alarm threshold and detect the 
event when the noise is not strong.

2) The CNN-based method can detect the event when the 
SNR is 0.0005, because it classifies the power grid state as 
abnormal during 1.83-4.21 s. However, when the SNR in‐
creases to 0.001, this method fails to detect the event be‐
cause only 12 sampling points are classified as abnormal 
and they are discontinuous, so it is difficult to distinguish 
the event from the noise.

3) The FPT-based method is the most sensitive and effec‐
tive method to detect events. As shown in Fig. 9 and Table 
III, this method triggers the alarm threshold with the least 
DM under two SNRs. In addition, it keeps alarming for a 
while in both cases.

4) Although the FPT-based method shows lower AR com‐
pared with the CNN-based method when the SNR is 0.0005, 
it has smaller DM. In addition, the FPT-based method works 
when SNR increases to 0.001, while the CNN-based method 
does not. Overall, the FPT-based method outperforms the 
other two data-driven methods for low SNRs.
4)　More Comparisons Between CNN-based Method and 
FPT-based Method

This paper uses extra training sets for the CNN-based 
method. However, it shows worse performance than the FPT-
based method in most cases, especially when it comes to 
sensitivity. What is more, although the CNN-based method 
can classify the events, it requires large amount of training 
sets for each type of event, which is unavailable in real pow‐
er systems, and the simulated data lead to poor generaliza‐
tion. While for the FPT-based method, only the data collect‐
ed from the normal operation state are needed, which is 
more applicable in real power systems.
5)　Orders of Moments and Cumulants of Event Detection In‐
dicator

Based on the simulations above, this part describes how 
the orders of moments and cumulants of the event detection 
indicator are decided, from the perspectives of sensitivity 
and robustness.

Figures 2(b), 3(b), and 4(b) describe the event detection 
results by the first, second, and third moments in three differ‐
ent cases, respectively. In the above three figures, we can 
see that the first moment is unable to detect the event be‐
cause the data are normalized during the calculation.

For the ideal simulated data from Figs. 2(a) and 3(a), both 
the second and third moments can detect the event, because 
both of them keep steady when the power grid operates nor‐
mally, and show increasing trend when there is an event. 
The difference is that the third moment is much more sensi‐
tive than the second one, which can make it easier to catch 
the event signals.

When it comes to the real-world case, as shown in Fig. 4(b), 
although the third moment fluctuates more because of its bet‐
ter sensitiveness, it does not hit the threshold and can distin‐

guish between the normal operation state and the event, so 
its robustness is acceptable. In addition, the second order mo‐
ment is so robust that it may fail to detect some data stream 
changing. For example, for the decreasing trend at around 
3.6 s, the second moment stays steady and does not catch 
the event signal while the third moment successfully catch it.

To conclude, the third moment can meet the requirements 
of both sensitivity and robustness. This paper does not use 
higher order more than the third order, because the higher 
the order, the more sensitive the indicator, which may not fit 
the real-world case. In addition, the higher order will take 
more time to do the calculation.

V. CONCLUSION 

IoT enables the real-time big data collection and online 
state monitoring possible in power systems. In this paper, a 
data-driven event detection architecture is proposed based on 
FPT. The event detection matrix constructed by IoT-enabled 
measurements is described as an information-plus-noise mod‐
el, where normal fluctuations of measurements, background 
noises, and measurement errors are regarded as “noises”, 
and the event signal is taken as the information. Then, using 
FPT as the tool, the ESD-based moments of the event infor‐
mation matrix are extracted from the information-plus-noise 
model, where the noise matrix is constructed using the mea‐
surements collected under normal state, and the alarm thresh‐
old is determined based on the CLT. Besides, the online 
event detection is conducted based on the sliding window. 
Based on IoT-enabled measurements from PMUs, case stud‐
ies prove that our method is effective in detecting the events 
using voltage magnitude, frequency, and current. In addition, 
because of consideration of the “noises”, the proposed meth‐
od can reduce the influences of the “noises” mentioned 
above, so it has better sensitivity and is more adaptive to the 
real PMU data.

The work in this paper can help handle the challenges of 
power systems under IoT. In the future, data streams from 
different IoT-enabled devices will be considered to provide a 
more universal solution for power system event detection.
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