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Abstract——Lately, the power demand of consumers is increas‐
ing in distribution networks, while renewable power generation 
keeps penetrating into the distribution networks. Insufficient da‐
ta make it hard to accurately predict the new residential load 
or newly built apartments with volatile and changing time-se‐
ries characteristics in terms of frequency and magnitude. 
Hence, this paper proposes a short-term probabilistic residen‐
tial load forecasting scheme based on transfer learning and 
deep learning techniques. First, we formulate the short-term 
probabilistic residential load forecasting problem. Then, we pro‐
pose a sequence-to-sequence (Seq2Seq) adversarial domain ad‐
aptation network and its joint training strategy to transfer ge‐
neric features from the source domain (with massive consump‐
tion records of regular loads) to the target domain (with limited 
observations of new residential loads) and simultaneously mini‐
mize the domain difference and forecasting errors when solving 
the forecasting problem. For implementation, the dominant 
techniques or elements are used as the submodules of the 
Seq2Seq adversarial domain adaptation network, including the 
Seq2Seq recurrent neural networks (RNNs) composed of a long 
short-term memory (LSTM) encoder and an LSTM decoder, 
and quantile loss. Finally, this study conducts the case studies 
via multiple evaluation indices, comparative methods of classic 
machine learning and advanced deep learning, and various 
available data of the new residentical loads and other regular 
loads. The experimental results validate the effectiveness and 
stability of the proposed scheme.

Index Terms——Domain adaptation, neural network, residential 
load forecasting, transfer learning, probabilistic forecasting.

I. INTRODUCTION 

SHORT-TERM load forecasting of power demand is one 
of the main research areas in electrical engineering [1]. 

Load forecasts are crucial to the planning and operation of 
power systems, particularly in the context of developing elec‐
tricity markets and promoting renewable energy. When inte‐
grating distributed renewables, generating accurate forecasts 
is one of the essential parts in the energy management of res‐
idential households [2] conducted by regional operators. For 
instance, the renewable power generation such as photovolta‐
ic may provide part of the household power demand. The ac‐
curate load forecasts are important for the operators, espe‐
cially in twofold contexts. First, the capacity of distributed 
solar power can occupy over 45% of the total capacity [3]. 
Then, residential prosumers generate around two-thirds of 
the growth in distributed solar power [4].

Numerous techniques have been applied to generate fore‐
casts, which can be grouped into classic statistical tech‐
niques (e. g., stochastic time-series models [5]), machine 
learning (e.g., support vector regression [6]), and deep learn‐
ing techniques (e.g., long short-term memory (LSTM) recur‐
rent neural networks (RNNs)) [7]. Identifying an adequate 
model is the key to producing accurate forecasts and is the 
core link of the forecasting procedure [8]. Deep learning, 
which allows computational models consisting of multiple 
processing layers to learn representations of data with multi‐
ple levels of abstraction, has improved the state-of-the-art in 
financial indices, weather indices, energy demand, and other 
areas in addition to achieving breakthroughs in computer vi‐
sion, natural language processing, and speech recognition 
[9]. The success of deep learning relies on the automation of 
discovering intricate neural networks (NNs) in high-dimen‐
sional features of each hidden layer in modularized, data-
driven, and end-to-end manners instead of manually select‐
ing a given dataset or given data sources [10].

Lately, the community has paid attention to residential 
load forecasting and probabilistic forecasting problems. On 
the one hand, the residential load is uncertain and random, 
depending on varying individual behavior patterns, regional 
layouts, and complicated factors such as weather conditions, 
exhibiting random time-series characteristics [11]-[14]. Refer‐
ence [11] considers the practice theory of human behaviors 

Manuscript received: November 1, 2023; revised: December 25, 2023; accept‐
ed: March 17, 2024. Date of CrossCheck: March 17, 2024. Date of online publi‐
cation: May 10, 2024. 

This work was supported by the National Natural Science Foundation of Chi‐
na (No. 52177087).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

H. Dong, J. Zhu (corresponding author), S. Li, Y. Miao, and Z. Chen are with 
the School of Electric Power Engineering, South China University of Technolo‐
gy, Guangzhou, China, and H. Dong is also with the Department of Electrical 
Engineering, The Hong Kong Polytechnic University, Hong Kong, China (e-
mail: hanjiang. dong@foxmail. com; zhujz@scut. edu. cn; iamlshl@126. com; mi‐
aoyw2021@163.com; epchenzy@mail.scut.edu.cn).

C. Y. Chung is with the Department of Electrical Engineering, The Hong 
Kong Polytechnic University, Hong Kong, China (e-mail: c.y.chung@polyu.edu.
hk).

DOI: 10.35833/MPCE.2023.000841

1559



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 5, September 2024

to present a sampling model based on the Markov chain to 
predict the aggregated residential loads in a bottom-up style. 
References [12] and [14] use LSTM RNNs to process resi‐
dential behaviors through the whole residential consumption 
and selected appliances, to generate short-term forecasts. Ref‐
erence [13] disaggregates the total load of aggregated house‐
holds into partial loads monitored by smart meters as well as 
others predicted via NNs. In summary, the data-driven meth‐
ods, particularly LSTM RNNs, have exhibited superior gen‐
eralization capability in generating residential load forecasts.

Furthermore, sequence-to-sequence (Seq2Seq) RNNs can 
describe the volatile temporal characteristics of residential 
consumption records in distribution networks [15]. Refer‐
ence [16] explores Seq2Seq RNNs for modeling unpredict‐
able supply-demand imbalances caused by the variable na‐
ture of distributed renewable power generation in commer‐
cial or office buildings. Reference [17] attempts to predict 
the peak residential demand supplied by distribution network 
operators, who handle the energy policy and deploy demand 
response programs, by designing bidirectional LSTM (B-
LSTM) Seq2Seq RNNs. As deep learning methods make the 
energy industry to be more reliable and sustainable, [18] con‐
firms the feasibility of Seq2Seq RNNs for producing multi-
step load forecasting in single households. Hence, Seq2Seq 
RNNs serve as a promising solution to processing input se‐
quences (e.g., influential factors) and output sequences (e.g., 
multi-step targets). The investigations and explorations of 
Seq2Seq RNNs in residential load forecasting are imperative.

On the other hand, the probabilistic load forecasting solu‐
tions that can describe the uncertainty of predictions are up‐
surging [19]-[21]. Specifically, [20] proposes a convolutional 
neural network (CNN) with squeeze-and-excitation modules 
to handle micrometeorological records and obtain day-ahead 
probabilistic load forecasts for residents. Reference [21] pro‐
poses a modified memristive LSTM RNN by characterizing 
variable-wise features and the temporal importance via a 
mixture of attention-based techniques to interpret the predic‐
tions produced by the model. In summary, the probabilistic 
load forecasting solutions are increasingly significant for 
households, particularly when integrating stochastic and in‐
termittent renewables. However, there is a lack of the explo‐
ration of utilizing the adaptive Seq2Seq RNNs to get flexi‐
ble probabilistic forecasts, illustrating the research gap in 
this topic.

Moreover, current studies seldom notice the limited imple‐
mentation of the powerful Seq2Seq RNNs to the forecasting 
scheme for the new residential loads that generally lack 
enough data records. In other words, insufficient data make 
it difficult to generate accurate forecasts for the new residen‐
tial load. To our knowledge, there remains no technical work 
focusing on new residential loads from real-life consider‐
ations, which motivates us to propose a probabilistic residen‐
tial load forecasting scheme using limited data on the 
Seq2Seq RNN. The domain adaptation network is well-
known in computer vision and other artificial intelligence 
fields, but its application to the residential load forecasting 
is not so well-known from expectation. Reference [22] pres‐
ents an ensemble model, where the updated data can be uti‐
lized to adjust the weights by a sample domain adaptation 

method called Tradaboost. Reference [23] improves the ad‐
versarial domain adaptation method through an initial state 
fusion strategy that analyzes adversarial disequilibrium and 
an information entropy index that quantifies domain similari‐
ty. In this context, we recognize the realistic condition, 
where sufficient data of regular loads cannot be directly 
used through deep learning methods to generate forecasts for 
the new residential load due to distribution shift. In other 
words, the limited data of new residential loads are not 
enough for leveraging the power of deep learning methods, 
and deep learning methods should not be directly used due 
to the assumption that the training data are independent and 
identically distributed and the risk of overfitting.

Hence, this paper proposes a short-term probabilistic resi‐
dential load forecasting scheme. The aim of this study is to 
solve the load forecasting problem for the new residential 
loads, where many other regular loads have been connected 
to power system for a relatively long time. The distribution 
of energy demand of the new residential loads, which is dif‐
ficult to approximate with insufficient or limited data, can be 
different from that of other regular loads that own relatively 
sufficient data. The innovation of the proposed scheme is the 
Seq2Seq adversarial domain adaptation network that can 
align distributions of sufficient data of regular loads and the 
limited data of new residential loads, thus reasonably meet‐
ing the assumption that the training data are independent and 
identically distributed before leveraging the potential power 
of deep learning methods to improve the forecasts, which is 
necessary but usually ignored. Thus, the proposed scheme 
can process sufficient data of regular loads to maintain mod‐
el performance, though the data of the new residential loads 
are limited.

The contributions of this paper are as follows.
1) A Seq2Seq adversarial domain adaptation network and 

its joint training strategy are proposed to align the distribu‐
tion of sufficient data of regular loads and the limited data 
of the new residential loads.

2) An LSTM cell based teacher forces the Seq2Seq RNN 
with quantile loss as the submodules of the Seq2Seq adver‐
sarial domain adaptation network to capture temporal depen‐
dencies between regular loads and the new residential loads.

3) The proposed Seq2Seq adversarial domain adaptation 
network is comprehensively compared with other classic 
methods in different horizons, criteria, and scarcity degrees 
of energy consumption observations.

The remainder of this paper is organized as follows. Sec‐
tion II formulates the short-term probabilistic residential load 
forecasting problem. Section III proposes the short-term 
probabilistic residential load forecasting scheme. Section IV 
performs a comprehensive case study to validate the pro‐
posed scheme using multiple evaluation indices, comparative 
techniques, and limited degrees. Section V draws the conclu‐
sions.

II. FORMULATION OF SHORT-TERM PROBABILISTIC 
RESIDENTIAL LOAD FORECASTING PROBLEM 

This section will clarify the short-term probabilistic resi‐
dential load forecasting problem from the short-term deter‐
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ministic load forecasting problem and the conventional multi-
step (such as 24-point day-ahead) load forecasting problem.

A. Short-term Deterministic Load Forecasting Problem

Given the dataset O clean
t  at the time t, we often process the 

chronological observations by identifying adequate models 
and optimizing the model assignments. Denote the current 
time as tc, the forecasting gap time as tg, the forecasting lead 
time (i.e., horizon) as th, and the number of horizons as N hor. 
The records at a certain time oclean

t  cover the elements that 
can be classified into the static covariate vector ostatic

t , the his‐
torical vector opast

t , and the future vector ofuture
t , where t =

12tctc + thtc +N horth. The static covariate vector 
ostatic

t  covers temporal-static factors such as the load location 
and the identity number of residents. The historical vector 

opast
t = [ ]oobs

t - tw:to
known
t - tw:t  involves the information available from 

the historical time, i.e., the observed factors oobs
t - tw:t such as tar‐

get loads and other public factors oknown
t - tw:t , where tw is denoted 

as the span of the last records for each horizon. The future 

vector ofuture
t = [ ]otarget

t:t + tg + th
oknown

t:t + tg + th
 involves the information for 

the future moments, i. e., the target vector o target
t:t + tg + th

 and other 

pre-known factors oknown
t:t + tg + th

 such as calendar rules. In regres‐

sion, the target vector o target
t:t + tg + th

 is the dependent variable yt, 

and the input variable x t involves historical, future, and stat‐

ic covariate vectors, i. e., f: x t ytx t = [oobs
t - tw:to

known
t - tw:t + tg + th

 

]ostatic
t , yt = o target

t:t + tg + th
, as expressed in (1).

F i: = { }f: x t yt|yt = f ( )x t ; θi θiÎRN par

(1)

where f: x t yt reflects the mapping between the input x t 
and the output yt; F i is the assignment space of the model 
ii = 12Ni, and Ni is the number of candidate models; θi 
is the parameter vector or matrix of the model i; and N par is 
the number of parameters.

Given the dataset D of influential factors and target vari‐
ables, the experts estimate the optimal parameter assign‐
ments θ *

i  for the alternative models over varying optimal hy‐
perparameters λ*

i  that are tuned by trials and errors with the 
training data Dest = { }x est

t yest
t , as expressed in (2). Let fi be 

the mapping described via model i. Experts then compare 
the performance of the alternative models to identify the ade‐
quate model to produce predictions ŷest

t  over the testing in‐
puts x est

t  (a.k. a., features), assuming that true testing targets 
yest

t  remain unknown before deploying it, as shown in (3).

θ *
i = arg min

θiÎΘi

Remp( )θi  arg min
θiÎΘi

E
Dest i.i.d.D( )L ( )fi( )θi Dest|λ*

i   

(2)

f * = arg min
fÎ { }f *

i

Ni

i = 1

E
Dest i.i.d.D( )C ( )fiD

est|θ *
i λ

*
i (3)

where Θi is the set of θi; Remp( )θi  is the empirical loss; 

E
Dest i.i.d.D( )L (·)  is the expectation of the loss function L (·) on 

the independent and identically distributed training data Dest 
under an unknown distribution D; and C (·) is a cost function 
to evaluate the forecasting accuracy.

B. Multi-step Load Forecasting Problem

When the lead time is a time step, the model generates a 
single scalar (i. e., point) at each time, where the load fore‐
casting problem is defined as a single-step load forecasting 
problem in (4). When the lead time covers more than one ob‐
served moment for the whole next day or week, the model 
outputs a specific profile composed of multiple points at a 
time in the multi-step load forecasting problem. There are 
three major solutions to the multi-step load forecasting prob‐
lem, i.e., the day-ahead forecasting problem in this study: ① 
combining multiple single-step load forecasting models, each 
of which produces forecasts independently, as depicted in 
(5); ② using a multi-step load forecasting model to generate 
interval-ahead curves once and for all, as given in (6), which 
is adopted in this study by deep learning methods; and ③ re‐
placing the inputs with the last predicted values to generate 
the forecasts iteratively, as given in (7).

F i: = { }f: x t yt| yt = f ( )x t ; θi θiÎRN par

(4)

F ih: = { f: x th yth| yth = fi( x th ; θih )} (5)

F i: = { f: x t yt| yt = f ( x t ; θi )} (6)

F i: = { f: x th yth| yth = f ( x th ; θi )} (7)

where h is the index of horizon, h = 12N hor.

C. Probabilistic Load Forecasting Problem

The single-step load forecasting problem is defined as a 
deterministic forecasting problem when the model generates 
a deterministic value at each time, as given in (4). The deter‐
ministic forecasts are the most common form but cannot por‐
tray the uncertainty of the predictions. Thus, uncertain pre‐
dictions in the forms of intervals, quantiles, and distribution 
densities are targeted in the probabilistic load forecasting 
problem. Each model depicts the probability distribution 
F (Yt| X t ) with the random variable Yt of the target variable 

yt at the time t, given the random variable Xt of the input x t, 

i. e., Yt F (Yt| X t ). The random variable Yt correlates to the 

conditional probability distribution P ( )·
t ( y | x t ) =F ( yt £ y | x t ) 

for the target variable Yt P y
t ( yt| x t ) or the forecasting error 

Yt  yt +P ε
t (εt| x t ) given the input x t.

Moreover, the conditional probability distribution 
P ( )·

t ( y | x t ) can be represented by the probability distribution 

density Pt in (8), the quantile point yαqt
 in (9), or the ran‐

dom prediction interval It in (10) [24].

F i: = { f: x tPt| Pt( y | x t ) = f ( x t ; θi )} (8)

F iq: = { f: xαqt
 yαqt

|
|
|||| yαqt

= f (xαqt
; θiq )} (9)

F i: = { f: x t It| It( y|x t ) = f ( x t ; θi )} (10)

where αq is the nominal quantile level, and q = 12Q is 
the order of quantile prediction; θiq is the parameter vector 
or matrix of model i for the quantile q; and It( y|x t ) =
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{y
-α qt

y ᾱqt} is the prediction interval composed of lateral 

quantiles, and ᾱq and -α q are the upper and lower bounds of 

nominal quantile level, respectively.
Figure 1 shows the load forecasts at a certain moment in 

different forms. The quantile prediction can either discretely 
approximate the probability distribution density Pt or be se‐
lected to build the prediction interval It.

III. SHORT-TERM PROBABILISTIC RESIDENTIAL LOAD 
FORECASTING SCHEME 

A. Overall Framework

The proposed scheme consists of the attention-based en‐
coder-decoder network, adversarial domain adaptation net‐
work, LSTM RNNs, and quantile loss. Figure 2 depicts the 
overall framework of the proposed scheme. First, this frame‐
work takes the data of the new residential load, regular 
loads, and known factors as the samples. The data of the 

new residential load, i.e., [ ]onew
t - tw:to

known
t - tw:t + tg + th

, are divided into 

a testing set { }x new
t ynew

t  from the starting time t0 to the cur‐

rent time tc and a training set { }x est
t yest

t  from the earliest 

time t reg
0 =max ( )tn = 0:N reg  to the current time tc, where N reg is 

the number of the historical periods of regular loads. 

The training set is also mixed with the data record related to 

regular loads and their known factors, i.e., [ ]oreg
t - tw:to

known
t - tw:t + tg + th

.
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Fig. 2.　Overall framework of proposed scheme.

Generally, sufficient samples are required to identify flexi‐
ble NNs with numerous parameters. The Seq2Seq adversari‐
al domain adaptation network is proposed based on a feature 
extractor, a demand predictor, and a domain classifier by re‐
alizing a joint training process with the gradient reversal lay‐
er. For implementation, we adopt the generic elements as the 
submodules of the adversarial domain adaptation network in‐
cluding: ① the feature extractor by connecting an LSTM 
layer and a dropout layer, ② the demand predictor by con‐
necting another LSTM layer and dropout layer, ③ a fully-
connected feedforward layer as the domain classifier, and ④ 
dense layers after the demand predictor and domain classifi‐

er. In addition, we use an attention-based layer and a skip 
connection to capture the longer temporal dependency while 
mitigating the vanishing gradient problem, enhancing feature 
reuse, and facilitating the learning of identity mappings, 
which is motivated by the Seq2Seq RNN.

Both the data of the new residential load and regular 
loads can be leveraged via the Seq2Seq adversarial domain 
adaptation network, where the Seq2Seq RNN is well-trained 
by quantile loss before generating the multi-step probabilis‐
tic load forecasts. The optimal parameter assignments of the 
Seq2Seq adversarial domain adaptation network are repre‐
sented by (11) and (12), and then the estimated network gen‐

Load

Probability

density Deterministic

point

Prediction interval

Probability density

True value

Probability

density

Load

Deterministic point

Probability density

Quantile

True value

(a)

(b)

Fig. 1.　Load forecasts at a specific moment in different forms. (a) Point, 
prediction interval, and probability density. (b) Point, quantile, and probabili‐
ty density.
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erates the final load forecasts by (13).

{ }θ*fθ*yθ*z = arg min
θ fθyθz

Remp( )θ(·)|Dest
(11)

θ*dense = arg min
θdense

Remp( )θdense|Dnewθ*fθ*yθ*z
(12)

ônew
t = f proposed( )onew

t - tw:to
known
t - tw:t + tg + th

; θ*proposed 

Gdense( )Gy( )Gf ( )x new
t ; θ*f ; θ*y ; θ*dense (13)

where Dnew is the dataset of the new load; θ*proposed is the 
vector of parameters for the proposed scheme; ônew

t  is the 
prediction of the new load; f proposed( )·  is the function of the 
proposed Seq2Seq adversarial domain adaptation network; 
Gf( )·  and θ f are the feature extractor and the vector of its pa‐
rameters, respectively; Gy( )·  and θy are the demand predictor 
and the vector of its parameters, respectively; Gdense( )·  and 
θdense are the output layer and the vector of its parameters, re‐
spectively; θz is the vector of parameters for domain classfi‐
er; and θ*f, θ*y, θ*z, and θ*dense are the optimal parameter as‐
signments of θ f, θy, θz, and θdense, respectively.

B. Adversarial Domain Adaptation Network

The parameters of the NN-based forecasting models are 
optimized by assuming the training data are independent and 
identically distributed. However, the accuracy of load fore‐
casts could not be assured when the data distributions of the 
training and testing datasets vary, which is also known as a 
shift between data distributions of the training and test datas‐
ets. The concept of domain adaptation aims to learn a dis‐
criminative classifier or another predictor when there is a 
shift between data distributions of the training and test datas‐
ets, which is generally operated by matching the feature dis‐
tributions in the source and target domains of synthetic or 
semi-synthetic image data. A dominant approach is to accom‐
plish a feature space transformation that measures the simi‐
larity or dissimilarity between different distributions and 
maps the distributions of the source domain to the target do‐
main [25]. In addition, the domain adaptation in the NN has 
been proposed to learn the features that are both discrimina‐
tive for the target learning task in the source domain and in‐
variant to the shift between the domains [26]. The combina‐
tion of domain adaptation and neural architectures can be 
achieved by jointly optimizing the two components (i.e., de‐
mand predictor and domain classifier) and their underlying 
features in the training processes of the feedforward neural 
architecture models.

On the one hand, the demand predictor predicts the class 
label of domains during the training and testing processes. 
On the other hand, during the training process, the domain 
classifier discriminates between the source and the target do‐
mains. The feature extractor that is connected to the demand 
predictor and the domain classifier learns the deep features 
with discriminative and domain-invariance capabilities. Spe‐
cifically, the parameters of the two components are opti‐
mized to minimize their error on the training set, and the pa‐
rameters of the feature extractor are optimized to minimize 
the losses of the demand predictor and the domain classifier. 
After the optimization, the feature extractor learned for the 
source domain can be implemented in the target domain. 

The error of the joint training processes of the feature extrac‐
tor, demand predictor, and domain classifier on the adversari‐
al domain adaptation network is calculated by:

Remp( )θ fθyθz = ∑
t = 12T

zt = 0

Ly
t ( )θ fθy - λ ∑

t = 12T

Lz
t ( )θ fθz 

∑
t = 12T

zt = 0

Ly( )Gy( )Gf ( )X t ; θ
f ; θy yt -

λ ∑
t = 12T

Lz( )Gz( )Gf ( )X t ; θ
f ; θz zt (14)

where Gz( )·  is the domain classifier; T is the number of sam‐
ples; zt is the domain classification of observation, zt = 0 
when the data at the time t belong to the target domain, 
zt = 1 when the data at the time t belong to the source do‐
main; Ly

t ( )·  and Lz
t ( )·  are the loss functions; and λ is the 

trade-off weight between the losses of domain classifier Gz 
and demand predictor Gy.

As a result, the deep feature from the feature extractor Gf 
represents a space transformation between the distribution of 
the output of the demand predictor Gy in the source domain 
X sour

t ~Dsour and that in the target domain X tar
t ~D tar, i.e.,

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Gy( )Gf ( )X sour
t ; θ f ; θy »Gy( )Gf ( )X tar

t ; θ f ; θy ~Dy

Dsour ¹D tar

X sour
t ~Dsour

X tar
t ~D tar

(15)

where Dy is the true distribution of the outputs yt, t =
12T.

Moreover, the parameters θ̂ f, θ̂y, and θ̂z are orderly opti‐
mized to deliver the saddle point of (14):

ì

í

î

ïïïï

ï
ïï
ï

( )θ̂ fθ̂y = arg min
θ fθy

( )θ fθyθ̂z

θ̂z = arg min
θz

( )θ̂ fθ̂yθz
(16)

Specifically, the saddle point (16) is a stationary point of 
stochastic gradient descent (SGD) updates for the feedfor‐
ward network model composed of a feature extractor Gf, a 
domain classifier Gd, and a demand predictor Gy:

θ f¬ θ f - μ ( ¶Ly
t

¶θ f
- λ

¶Lz
t

¶θ f ) (17)

θy¬ θy - μ
¶Ly

t

¶θy
(18)

θd¬ θd - μ
¶Lz

t

¶θz
(19)

where μ is the learning rate, which can vary over time.
However, we note that the minimization of the objective 

function (14), i.e., min Remp, includes a minimization optimi‐
zation of prediction minLy

t  and a maximization of classifica‐
tion -min λLz

t, and thus a “pseudo-function gradient” rever‐
sal layer Lλ( x ) only with the hyperparameter λ proposed in 
[26] is implemented to transform certain updates (17) - (19) 
into the standard form of SGD. Specifically, we adopt an 
identity transformation as the gradient reversal layer during 
the forward propagation, as given in (20). Then, the speci‐
fied layer passes the gradient from the subsequent neural lay‐
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er to the preceding layer by multiplying -λ during the back‐
propagation, which is computed by:

Lλ( x ) = x (20)

dLλ

dx
=-λI (21)

where Lλ is a gradient reversal layer; and I is an identity ma‐
trix.

Based on Lλ, the modification of the objective function 
(14) with standard SGD forward propagation and backpropa‐
gation can be obtained as:

R͂emp(θ fθyθz ) = ∑
t = 12T

zt = 0

Ly
t ( )Gy( )Gf ( )X t ; θ

f ; θy yt +

∑
t = 12T

Lz
t ( )Gz( )Lλ( )Gf ( )X t ; θ

f ; θz zt (22)

C. LSTM RNNs

The RNN is a promising approach for solving load fore‐
casting problems because the record of energy consumption 
often exhibits temporal characteristics. RNNs proposed for 
processing sequential data (such as speech, multivariate time 
series, and text) can leverage the time interdependency in 
the chronological values through the ideas of parameter-shar‐
ing and graph-unrolling [9], [27]. RNNs combine the input 
at the moment t x RNN

t  and the hidden state at the last mo‐
ment hRNN

t - 1 , and produce the current hidden state hRNN
t , as de‐

scribed in (23). The output at the moment t  yRNN
t  is then 

computed with the hidden state hRNN
t - 1 , as described in (24). In 

multilayer networks, the recurrent neural layer composed of 
RNN cells can be used as a specific classification of the hid‐
den layer. The hidden state hRNN

t  will be different if the 
chronological order of the timestamps of the input x RNN

t  
changes.

hRNN
t = tanh ( )W RNNhRNN

t - 1 +U RNN x RNN
t + bRNN

2 (23)

yRNN
t = f RNN( )V RNNhRNN

t + bRNN
1 (24)

where tanh ( )·  is a hyperbolic tanh function; W RNNU RNN, 
and V RNN are the matrices of weights; and bRNN

1  and bRNN
2  are 

the vectors of biases.
The LSTM RNN adopts the gating mechanism to alleviate 

the gradient vanishing problem in conventional RNNs for 
modeling relatively long short-term dependency. It creates 
the path whose derivatives neither vanish nor explode to use 
the early temporal dependency (the hidden state) over the con‐
nection weights. The gradients flow via self-loops, where the 
weights are conditioned to the given data, as depicted in Fig. 3.

Specifically, the LSTM RNN takes an outer recurrence as 
the conventional RNN, an outer recurrence as a generic 
RNN, and an internal recurrence as the LSTM cell, as given 
in (25)-(30). In the outer recurrence, the element-wise medi‐
ate variable z LSTM

t  correlates to the affine transformation of 
the input variable x LSTM

t  and the hidden layer vector hLSTM
t - 1  

from the last moment. In the internal recurrence, the internal 
state vector at the given time t sLSTM

t  depends on the variable 
z LSTM

t  that relates to the input gate g in
t  and the variable z LSTM

t - 1  
from the last moment that relates to the forget gate g forget

t . 
The LSTM cell yLSTM

t , i.e., the hidden layer vector hLSTM
t , de‐

rives from the signal from the output gate g out
t . This process 

has been depicted in [28].

z LSTM
t = tanh ( )W LSTMhLSTM

t - 1 +U LSTM x LSTM
t + bLSTM (25)

sLSTM
t = z LSTM

t g in
t + z LSTM

t - 1 g forget
t (26)

yLSTM
t = hLSTM

t = tanh ( )sLSTM
t g out

t (27)

g in
t = σ ( )W inhLSTM

t - 1 +U in x LSTM
t + b in (28)

g forget
t = σ ( )W forgethLSTM

t - 1 +U forget x LSTM
t + bforget (29)

g out
t = σ ( )W outhLSTM

t - 1 +U out x LSTM
t + bout (30)

where σ ( )·  is the Sigmoid function, which is another activa‐
tion function besides tanh ( )· ; and W ( )· , U ( )· , and b( )·  are the 
specific parameters in the LSTM cell.

D. Attention-based Encoder-decoder Network

The Seq2Seq RNN exhibits superior capability in model‐
ing temporal characteristics between the input and output se‐
quences by leveraging the local context around the target. 
The Seq2Seq RNN was first designed and used in computer 
vision, speech recognition, and natural language processing 
[15]. Unlike conventional RNNs, it contains an encoder to 
process sequential data of the influential factors, a decoder 
to generate multi-step load forecasts, and possibly an atten‐
tion vector to mark essential dependencies in the sequence, 
as discussed in [28].

Figure 4 illustrates the encoder-decoder network with 
mixed inputs, where the encoder and decoder networks are 
two individual LSTM RNNs. The post-known factors, i. e., 
observed factors oobs

t - tw:t and known factors oknown
t - tw:t , are the in‐

puts of the encoder. The encoder receives the input x enc
t - tw:t and 

extracts the local temporal context cenc from the hidden state 
of encoder henc

t  as the first hidden state of decoder. The de‐
coder combines the local context cenc, the ground truth input 
x dec

t + tg:t + tg + th
 of pre-known factors oknown

t:t + tg + th
, and the self-generat‐

ed input ŷdec
t + tg:t + tg + th

 to obtain predictions ŷdec
t + tg:t + tg + th

 related to 

the hidden states {hdec
t + tg

hdec
t + tg + th /nh

hdec
t + tg + th

} that can be eval‐

uated via the targets ydec
t + tg:t + tg + th

 during the lead time. The 

green dotted line represents that the prediction at the last mo‐
ment is the input of the next moment.

E. Bayesian Target Encoding Based Data Pre-processing

Existing works usually consider calendar-related informa‐
tion as categorial features such as the hours in a day, the 
days in a week, the months in a year, the distinction be‐
tween holidays and non-holidays, the distinction between 
weekdays and weekends, and the distinction between vary‐
ing seasons, which can be used as part of the inputs of the 
load forecasting model after encoding. The one-hot encoding 
approach is one of the most common encoding approaches 
for categorial features. Figure 5 shows a common example 
of the one-hot encoding approach on monthly calendar-relat‐
ed features. We can see that the number of newly supple‐
mented 0-1 features could be massive when the original fea‐
ture involves too many categories, e.g., from 1 to 12 dimen‐
sions.
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To address the explosion of inputs by the one-hot encod‐
ing approach, we adopt the Bayesian target encoding to pre-
process categorial features. Specifically, the values of the cat‐
egorial features are compared with average observations of 
the load in the corresponding categorical values, as depicted 
in Fig. 6, thereby depicting the relationship between continu‐

ous and categorical features more explicitly, where L1-L8760 
are the hourly loads in a year; and L̄Jan.-L̄Dec. are the average 
monthly loads from January to December.
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Moreover, we utilize a Z-score normalization method to 
map the values of the target load and its influential factors 
with different dimensions into a specific range [29]. The da‐
ta y͂t calculated by (31) should follow the standard normal 
distribution, whose mean is 0 and standard deviation is 1.

y͂t = ( yt -
1
T∑t = 1

T

yt) ( 1
T∑t = 1

T ( )yt -
1
T∑t = 1

T

yt

2 ) -1

(31)

F. Miscellanies

To evaluate the model performance, we compare load fore‐
casts and true values via quantile score (QS) and Winkler 
score (WS) indexes.

The QS index calculated by (32) and (33) represents the 
mean of pinball losses throughout the lead time and all quan‐
tiles, respectively. A lower QS result indicates more precise 
forecasts compared with the ground truth values.

Lqua
αqt( )Gy( )Gf ( )X t ; θ

f
αq

; θ y
αq

yt| λ* Lqua
αqt( )ŷαqt

yt| λ* =

ì

í

î

ïïïï

ïïïï

q ( )ŷαqt
- yt ŷαqt

³ yt

( )q - 1 ( )ŷαqt
- yt ŷαqt

< yt

(32)

Rqs( )θ fθy =
1

QT∑q = 1

Q ∑
t = 1

T

Lqua
αqt( )Gy

θ y
αq( )Gf

θ f
αq

( )X t yt| λ* (33)

where Lqua
αqt( )×  is the quantile loss function for the nominal 

quantile level αq at the time t; λ* is the optimal hyperparame‐
ter; ŷαqt

 is the prediction for quantile αq at the time t; and 

Rqs( )×  is the average quantile loss.
Based on the quantile loss, the loss function of the dense 

layer after the feature extractor, the gradient update (with the 
impact on the loss Ñθ denseLαqt

), and the optimization process 

is established by (34)-(36), respectively.

Ldense
αqt (θ dense ) =∑Ly

αqt( )θ dense ; θ̂ *fθ̂ *yŷnew
αqt
ynew

t (34)

θ dense = θ dense - μ
¶Ldense

αqt

¶θ dense
(35)

θ̂ dense = arg min
θ dense

Ldense
αqt (θ̂ *fθ̂ *yθ dense ) (36)

where Ldense
αqt

 is the dense loss function for the nominal quan‐

tile level αq at the time t.
The gradient updates (16). Besides, the loss function (22) 

with the loss Ñθ fθyθzLproposed
αqt

 can be updated as:

Lproposed
αqt (θ fθyθz ) =Ly

αqt(θ fθy ; ŷestload
αqt

yestload
t ) -

λLz
αqt(θ fθz; ẑ estlabel

t z estlabel
t ) (37)

( )θ̂ fθ̂y = arg min
θ fθy

Ly
αqt(θ fθyθ̂z ) (38)

θ̂z = arg min
θz

Lz
αqt(θ̂ fθ̂yθz ) (39)

where Lproposed
αqt ( )×  is the loss function of the proposed frame 

for the nominal quantile level αq at the time t; ŷestload
αqt

 is the 

prediction of the new load for the nominal quantile level αq 
at the time t; yestload

t  is the ground truth of load at the time t; 
ẑ estlabel

t  is the prediction of the domain label at the time t; 
and z estlabel

t  is the ground truth label at the time t.
The WS index evaluates the sharpness and reliability of 

the prediction intervals constrained to the quantile bounds by 
(40) and (41). A lower WS is generally desired because an 
overly wide interval is meaningless [30].

L int
t ( )ŷαqt

yt| λ* =

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

ŷ ᾱqt
- ŷ

-α qt
ŷ
-α qt

£ yt £ ŷ ᾱqt

ŷ ᾱqt
+ ( )2

β
- 1 ŷ

-α qt
-

2
β

yt yt < ŷ
-α qt

( )1 -
2
β

ŷ ᾱqt
- ŷ

-α qt
+

2
β

yt yt > ŷ ᾱqt

(40)

Rws(θ fθy ) = 1
T∑t = 1

T

Lint
t ( )ŷαqt

yt| λ* (41)

ì

í

î

ïïïï

ïïïï

ᾱq - -α q = β

-α q = 1 - ᾱq =
β
2

(42)

where L int
t ( )×  is the interval loss function at time t; Rws( )×  is 

the average WS loss; and β is the confidence level relating 
to ᾱq and -α q.

In addition, the categorical cross-entropy (CCE) index, 
which is popular for classification problems, is adopted in 
(43)-(46) to compute the domain classification error. The ra‐
tio between the scales of samples from the source domain 
and the target domain γ is considered. The criterion makes 
the gradients computable when training the classification 
model. A lower CCE index ECCE(θ fθz ) generally represents 

better classification capability. However, we require a rela‐
tively high classification error to achieve the distributional 
consistency of the output of the demand predictor Gy from 
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source domain inputs Gy
θy(Gf

θ f( X sour
t ) ) and target domain in‐

puts Gy
θy(Gf

θ f( X tar
t ) ), across the connection between the fea‐

ture extractor Gf, the gradient reversal layer Lλ( x), and the 

domain classifier Gz, i.e., Gz
θz(Lλ(Gf

θ f( X t ) ) ), in this study.

LCCE
t (Softmax (Gz

θz(Lλ(Gf
θ f( X t ) ) ) ) zt| λ* ) LCCE

t ( ẑtzt| λ* ) =
- [ ẑt ln ( pt ) + γ (1 - ẑt ) ln (1 - pt ) ] (43)

Softmax ( zt ) = ezt

∑
t = 1

T

ezt
(44)

γ =
T sour

T tar
(45)

RCCE(θ fθz ) = 1
T∑t = 1

T

LCCE
t ( )Softmax ( )Gz

θz( )Lλ( )Gf
θ f( )X t zt| λ*

(46)

where LCCE
t ( )×  is the CCE loss function at the time t; RCCE( )×  

is the average CCE loss; T sour is the number of the source 
domains; T tar is the number of target domains; pt is the prob‐
ability of the sample from the target domain at the time t; 
and Softmax (·) represents the normalized exponential func‐
tion.

IV. CASE STUDY 

A. Dataset Description

A widely accepted real-life dataset published in [31] is uti‐
lized in this subsection. Specifically, the dataset contains 
hourly power consumption data of the entire New England 
system and eight parallel load zones including Rhode Island, 
New Hampshire, Northeast Massachusetts and Boston, West/
Central Massachusetts, Southeast Massachusetts, Vermont, 
Maine, and Connecticut from January 2022 to March 2023. 
To implement the proposed scheme, we select two varying 
loads as the source domain with massive records of histori‐
cal/regular loads and the target domain with limited data of 
new residential loads, and simulate diverse limited degrees 
of the source and target domains via the availability of corre‐
sponding records. For the whole dataset, the data are split in‐
to the training set (the samples before those in the validation 
and testing sets), the validation set (the next 672 samples be‐
fore the testing set), and the testing set (the last 240 sam‐
ples). When a certain proportion of the whole dataset is 
available, the same proportion of the whole training, valida‐
tion, and testing sets would be used for simulation. Before 
training the model, we shuffle the order of the samples in 
the training, validation, and testing sets.

Generally, the similarity should be evaluated before adapt‐
ing the knowledge in the source domain to the target do‐
main. As a preliminary similarity assessment, we pick the 
New Hampshire load zone as the target domain and other 
load zones as potential source domains. A dominant K-shape 
clustering algorithm is used to process the eight data sources 
of energy consumption and calculate the similarity between 

them [32]. Table I exhibits the assessment results generated 
by monthly and half-year data, which are evaluated by the 
shape-based distance (SBD) index covering three main clus‐
ters, one of which includes load zones of Maine, Connecti‐
cut, Northeast Massachusetts and Boston, New Hampshire, 
Southeast Massachusetts, and Rhode Island. Thus, we as‐
sume New Hampshire as the target domain and select the 
most similar zones, Massachusetts and Boston, as the source 
domain for case studies. We note that the K-shape clustering 
algorithm can be used in other cases to identify the correlat‐
ed source domains for the target domain.

B. Experimental Settings

Before training the customized Seq2Seq RNN in adversari‐
al domain adaptation, we manually determine the assign‐
ments of special parameters (i.e., hyperparameters) and tune 
them within specific ranges and numerical sets. This process 
involves experimental settings. In this study, these experi‐
mental settings are mainly divided into two groups: ① the 
training settings for the Seq2Seq RNN in adversarial domain 
adaptation in the proposed scheme, ablative analysis, and 
comparative models; and ② the model settings for the cus‐
tomized RNN itself. The experimental settings are summa‐
rized in Table II. The proposed scheme in the case study 
generates the 5%, 50%, and 95% quantile forecasts, which 
are evaluated by the QS and WS indexes. According to the 
results of the preliminary test, the target coverage level of 
90% is enough for evaluating the performance of prediction 
intervals, and other quantiles such as 10%, 20%, 60%, and 
70% can be covered by the interval between the 5% and 
90% quantile forecasts.

We identify the appropriate assignments of the model set‐
tings (e.g., the learning rate, the batch size, and the dropout 
rate [33]) by repeating random searching procedures [34] for 
80 times among 3 ´ 3 ´ 5 groups of possible assignments. 
The numbers in bold in Table II are the identified results af‐
ter 80 searches. Besides, we explore the assignments of EL, 
EN, DL, and DN through the sensitivity analysis to verify 
the stability and feasibility of the proposed scheme. 

TABLE I
ASSESSMENT RESULTS USING K-SHAPE CLUSTERING ALGORITHM

Load zones

West/Central 
Massachusetts

Vermont

Rhode Island

New Hampshire

Northeast 
Massachusetts and 

Boston

Southeast 
Massachusetts

Maine

Connecticut

Monthly

SBD

0.01693278

0.01923366

0.00092255

0

0.00065996

0.00141926

0.00068811

0.00082693

No. of 
clusters

0

1

2

2

2

2

2

2

Half-year

SBD

0.01404867

0.02019146

0.00131910

0

0.00102957

0.00289324

0.00220722

0.00192924

No. of 
clusters

0

1

2

2

2

2

2

2
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With the empirically optimal experimental settings, we re‐
peat the training process (i. e., optimizing model parameters) 
and the testing process (obtaining load forecasts and compar‐
ing them with ground truth values) for ten times to ensure 
the reproducibility and reliability of the results.

The case study is realized via the Python language (3.9.7), 
the TensorFlow wheel (2.7) [35], the Scikit-learn wheel 
(1.2.2) [36], the MAPIE wheel (0.6.4) [37], CUDA Toolkit 
platform (11.2.0), and the cuDNN library (8.1) through a ma‐
chine of the Intel Core CPU (i7-11800H @ 2.30 Giga Hz), 
the RAM (16.0 Giga Bytes), and the NVIDIA GeForce GPU 
(RTX 3060 @ 8.0 Giga Bytes).

C. Sensitivity Analysis

To validate the feasibility of the proposed scheme, we con‐
duct a detailed sensitivity analysis in terms of layers and 
neurons per layer in the encoder and decoder. Specifically, 
EL and DL are set to be 1, 2, 3, 4, and 5, and EN and DN 
range from 10 to 160. We then build varying Seq2Seq 
RNNs over the combinations of the two hyperparameter val‐
ues. Similarly, the classification- and regression-related in‐
dexes are used to evaluate the model performance difference 
with varying assignments of hyperparameter. In this subsec‐
tion, we assume that 100% of the source and target domains 
are available.

Table III shows the sensitivity analysis results of the pro‐
posed scheme with varying assignments of hyperparameters. 
From the average QS and the standard deviation for ten tri‐
als, the optimal numbers of EL, EN, DL, and DN should be 
2, 40, 2, and 40, respectively, which have been used as the 
default configuration. Specifically, the lowest QS drops at 
the value of 0.00266. The increase of EL, EN, DL, and DN 
brings more flexibility to capture the time-series characteris‐
tic, resulting in the QS reduction from 0.01071 to 0.00266. 
Nevertheless, too much flexibility causes overfitting to the 
limited data, and the QS thus increases again when the num‐

ber of neural layers is over 2 or the number of neurons per 
layer is over 40. In overfitting, the number of layers shows 
much more influence on the QS (from 0.00266 to 0.01071) 
than the number of neurons per layer (from 0.00266 to 
0.00353), conforming to the consensus that the deeper net‐
work is more adaptive than the wider network.

Furthermore, the encoder exhibits more impact on the QS 
(from 0.00266 to 0.01071 in terms of EL, or from 0.00266 
to 0.00353 in terms of EN) than the decoder (from 0.00266 
to 0.00597 in terms of DL or from 0.00266 to 0.00344 in 
terms of DN). This empirically confirms that the encoder of 
the feature extractor Gf plays an essential role in the pro‐
posed scheme. Similarly, it should be considered that the op‐
timal assignments for the lowest QS could cause narrow pre‐
diction intervals because of the high accuracy of the quantile 
forecasts and the ground truth values. Although the default 
configuration does not exhibit the best average WS 
(β = 90%) and the standard deviation for ten trials, we recom‐
mend the suboptimal assignments of hyperparameters to bal‐
ance QS and WS when implementing the proposed scheme.

D. Scenario Exploration

To vividly illustrate the performance of the proposed 
scheme in addressing the data lack phenomenon, we compre‐
hensively simulate diverse scenarios related to the data avail‐
ability of both source and target domains, and compare their 
performances. In other words, we evaluate the errors be‐
tween ground truth values and prediction intervals as well as 
quantiles, when various proportions of samples from the two 
domains (10%, 20%, 40%, 60%, 80%, and 100%) are avail‐
able, as summarized in Table IV. We use both regression-re‐
lated criteria QS and WS (β = 90%) and the classification in‐

TABLE II
SUMMARY OF EXPERIMENTAL SETTINGS

Classification

Training setting

Model setting

Hyperparameter

Length of input sequence

Length of output sequence

Epoch number

Repetition number

Early stopping patience

Optimization algorithm

Number of random searching

Learning rate

EL

EN

DL

DN

Batch size

Activation function type

Dropout rate

Value

24×1

24×1

10000

10

50

AdaM

50

0.001, 0.0001, 0.00001

1, 2, 3, 4, 5

10, 20, 40, 80, 160

1, 2, 3, 4, 5

10, 20, 40, 80, 160

64, 128, 256

tanh(·)

0.1, 0.2, 0.3, 0.4, 0.5

Note: EL, EN, DL, and DN are the numbers of encoder layers, encoder neu‐
rons per layer, decoder layers, and decoder neurons per layer, respectively.

TABLE III
SENSITIVITY ANALYSIS OF PROPOSED SCHEME WITH VARYING ASSIGNMENTS 

OF HYPERPARAMETERS

Hyperparameter

EL

1

2

3

4

5

2

2

2

EN

40

10

20

80

160

40

40

DL

2

2

1

3

4

5

2

DN

40

40

40

10

20

80

160

Average QS

0.00278 (0.00001)

0.00266 (0.00001)

0.00267 (0.00001)

0.00312 (0.00002)

0.01071 (0.00001)

0.00316 (0.00002)

0.00267 (0.00001)

0.00344 (0.00001)

0.00353 (0.00001)

0.00316 (0.00002)

0.00348 (0.00002)

0.00501 (0.00004)

0.00597 (0.00005)

0.00299 (0.00001)

0.00269 (0.00001)

0.00313 (0.00002)

0.00344 (0.00002)

Average WS

0.02613 (0.0001)

0.02461 (0.0001)

0.02362 (0.0001)

0.02077 (0.0001)

0.06536 (0.0001)

0.02291 (0.0001)

0.03284 (0.0002)

0.02490 (0.0001)

0.03123 (0.0002)

0.02869 (0.0003)

0.02236 (0.0001)

0.08236 (0.0007)

0.07154 (0.0006)

0.03160 (0.0002)

0.03320 (0.0002)

0.02006 (0.0001)

0.02474 (0.0001)

Note: the values in brackets are standard deviations. 
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dex CCE to evaluate forecasting errors. It should be noted 
that EL, EN, DL, and DN are set to be 2, 40, 2, and 40, re‐
spectively.

From Table IV, the average CCE and its standard devia‐
tion for ten trials reduce as the gap between the proportions 
of samples from the source and target domains becomes larg‐
er, and the lowest value is 0.0352 when utilizing 10% sam‐
ples from the source domain and 100% samples from the tar‐
get domain. Meanwhile, the CCE approaches and maintains 
at 0.2500 when the proportions of the source and target do‐
mains become similar. On the other hand, we obtain the low‐
est average QS and its standard deviation when all samples 
are available, i. e., 100% samples from both the source and 
target domains are utilized. However, the prediction interval 
can be narrow and tight if probabilistic forecasts are close to 
ground truth values. In summary, the proposed scheme 
shows the ability to extract deep features that transfer knowl‐
edge from the source domain to the target domain and de‐
creases the QS from 0.00862 (when 10% samples from the 
source domain are utilized) to 0.00471 (when 100% samples 
from the source domain are utilized).

Moreover, Table IV confirms the adversarial manner in 
the proposed scheme. The implicit features from the feature 
extractor Gf make the records of regular loads an advantage 
to the demand predictor Gy in generating the energy demand 
predictions for the new load while confusing the domain 
classifier Gz in judging which domain a specific sample is 
from. Specifically, the CCE index increases from 0.0352 to 
0.2500, while the average QS decreases from 0.00319 to 
0.00266 as the proportion of samples from the source do‐
main grows from 10% to 100%.

E. Comparison of Proposed Scheme and Other Schemes

To prove the superiority of the proposed scheme, we com‐
pare probabilistic forecasts generated by machine learning 
and deep learning schemes. The machine learning schemes 
include random forests (RFs) and gradient boosting decision 
trees (GBDTs). Deep learning schemes include generic fully 
connected feedforward NN (gen-FFNN), residual FFNN (res-
FFNN), gated recurrent unit (GRU) RNN, LSTM RNN, ge‐
neric temporal convolutional network (gen-TCN), condition‐
al TCN (con-TCN), and WaveNet. In addition, static and 
teacher force (TF) Seq2Seq RNNs without domain adapta‐
tion are applied as ablative models to compare with the pro‐
posed scheme. We also utilize the QS and WS indexes to 
evaluate the forecasting results obtained from these schemes 
with different proportions of samples from the two domains, 
as summarized in Table V. The settings of comparative 
schemes are determined according to [38]-[42].

From Table V, the TF Seq2Seq RNN accomplishes the 
lowest average QS of 0.00258 with the standard deviation of 
0.00001 for ten trials as expected, and the static Seq2Seq 
RNN reaches the lowest WS of 0.01173 when β is 90%, giv‐
en 100% samples from the target domain. In this half, when 
the dataset is sufficient, the proposed scheme outperforms 
the most dominant schemes with the same QS as the LSTM 
RNN of 0.00266. However, the task becomes much more dif‐
ficult when the scale of the samples is limited to only 10% 
of the entire dataset, which simulates potential situations of 

TABLE V
FORECASTING RESULTS OF PROPOSED SCHEME COMPARED WITH OTHER 

SCHEMES

Scheme

GBDT

RF

Gen-FFNN

Res-FFNN

LSTM RNN

GRU RNN

Gen-TCN

Con-TCN

WaveNet

TF Seq2Seq 
RNN

Static 
Seq2Seq RNN

Proposed

100% samples from 
target domain

QS

0.00253 
(0.00001)

0.00269 
(0.00001)

0.00317 
(0.00002)

0.00317 
(0.00002)

0.00266 
(0.00001)

0.00291 
(0.00001)

0.01144 
(0.00010)

0.00775 
(0.00007)

0.00845 
(0.00007)

0.00258 
(0.00001)

0.00323 
(0.00002)

0.00266 
(0.00001)

WS

0.02946 
(0.0003)

0.07370 
(0.0007)

0.08682 
(0.0008)

0.08645 
(0.0008)

0.04991 
(0.0005)

0.05945 
(0.0005)

0.03771 
(0.0003)

0.03559 
(0.0003)

0.04233 
(0.0004)

0.01209 
(0.0001)

0.01173 
(0.0001)

0.02461 
(0.0002)

10% samples from 
target domain

QS

0.00666 
(0.00001)

0.00648 
(0.00003)

0.00636 
(0.00003)

0.00623 
(0.00003)

0.01715 
(0.00060)

0.01419 
(0.00050)

0.03312 
(0.00150)

0.02412 
(0.00100)

0.01082 
(0.00050)

0.09575 
(0.00041)

0.09575 
(0.00040)

0.00471 
(0.00002)

WS

0.02603 
(0.0001)

0.05934 
(0.0002)

0.22743 
(0.0011)

0.21977 
(0.0010)

0.05719 
(0.0003)

0.06197 
(0.0003)

0.13722 
(0.0006)

0.10000 
(0.0004)

0.17805 
(0.0100)

0.43193 
(0.0020)

0.43193 
(0.0020)

0.02548 
(0.0001)

Note: the values in brackets are standard deviations. 

TABLE IV
PERFORMANCE OF PROPOSED SCHEME

Proportion of 
samples (%)

Source 
domain

100

80

60

40

20

10

100

80

60

40

20

10

Target 
domain

100

80

60

40

20

10

80

60

40

20

10

Average CCE

0.2500 (0.008)

0.2111 (0.006)

0.1687 (0.005)

0.1214 (0.004)

0.0667 (0.002)

0.0352 (0.001)

0.2361 (0.007)

0.2187 (0.006)

0.1964 (0.006)

0.1667 (0.005)

0.1477 (0.005)

0.2500 (0.001)

0.2500 (0.001)

0.2500 (0.001)

0.2500 (0.001)

0.2500 (0.001)

Average QS

0.00266 (0.00001)

0.00331 (0.00002)

0.00267 (0.00001)

0.00351 (0.00003)

0.00286 (0.00002)

0.00319 (0.00002)

0.00298 (0.00001)

0.00312 (0.00002)

0.00509 (0.00004)

0.00350 (0.00002)

0.00471 (0.00004)

0.00338 (0.00002)

0.00363 (0.00002)

0.00402 (0.00003)

0.00414 (0.00003)

0.00862 (0.00006)

Average WS

0.02461 (0.0001)

0.02306 (0.0001)

0.03611 (0.0002)

0.02442 (0.0001)

0.03120 (0.0002)

0.03129 (0.0002)

0.02240 (0.0001)

0.02542 (0.0001)

0.02142 (0.0001)

0.02632 (0.0001)

0.02548 (0.0001)

0.02741 (0.0002)

0.02963 (0.0002)

0.02753 (0.0001)

0.02721 (0.0001)

0.06526 (0.0003)

Note: the values in brackets are standard deviations. 
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the new residential load. The limited data have resulted in 
the degradation of all comparative schemes. For example, 
the QS values of static and TF Seq2Seq RNNs without ad‐
versarial domain adaptation have degraded from 0.00258 and 
0.00323 to 0.09575, respectively, and the WS values have re‐
duced from 0.01209 and 0.01173 to 0.43193, respectively.

Meanwhile, the proposed scheme exhibits its superiority 
in leveraging sufficient records of regular loads and supple‐
menting the available dataset when training the adaptive 
Seq2Seq RNN. Therefore, the proposed scheme keeps gener‐
ating accurate forecasts and can accomplish the best perfor‐
mance in terms of both the QS index (0.00471) and the WS 
index (0.02548). Given the entire target domain, we validate 
the performance through the proposed scheme with true pro‐
files by vividly illustrating a group of day-ahead quantile 
predictions and the ground truth values, as shown in Fig. 7, 
in which the 50% quantile forecasts fit the ground truth val‐
ue well. The interval between 5% and 95% quantile fore‐
casts also covers the ground truth values as expected. On the 
other hand, Fig. 8 depicts the profiles of the 5%, 50%, and 
95% quantile forecasts and the target when only 10% sam‐
ples of the target domain is available, further demonstrating 
the effective coverage of the ground truth values and the fit‐
ting capability.

V. CONCLUSION 

The proportion and scale of renewable power generation 
such as solar power in the distribution system keep increas‐
ing, so it is imperative to develop load forecasting technolo‐
gies to obtain precise net load profiles for planning and dis‐

patching the power system in the context of penetrating re‐
newables. This paper focuses on the volatile residential load 
series and addresses the data lack problem as a significant 
branch in the field of probabilistic load forecasting. The pro‐
posed scheme included a Seq2Seq RNN over two LSTM lay‐
ers as the feature extractor and the demand predictor, respec‐
tively, and a fully connected feedforward layer as the do‐
main classifier.

To implement the adversarial domain adaptation network, 
we mix historical records and newly collected residential 
load observations, train the Seq2Seq adversarial domain ad‐
aptation network with samples from source and target do‐
mains, and generate accurate forecasts.

In the case study, we investigate the stability and feasibili‐
ty of the proposed scheme for day-ahead probabilistic fore‐
casting by limiting the scale of available data from the 
source or target domains. The results show that the methods 
or techniques widely accepted may lose their extraordinary 
capability and become vulnerable when data resources are in‐
evitably limited or insufficient. Meanwhile, although the 
Seq2Seq RNN is often fed with massive data, the proposed 
scheme can maintain robust performance for precise load 
forecasts as we gradually reduce the available scales of the 
source and target domains. This finding can inspire further 
discussions and investigations of new technologies to deal 
with the data lack phenomenon in this area. Future work 
will consider the attention mechanism when integrating do‐
main adaptation into a Seq2Seq RNN.
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